import gradio as gr import requests import json import os from dotenv import load_dotenv # 加载.env文件中的环境变量 load_dotenv() # 从环境变量中读取配置 API_URL = os.getenv("API_URL") API_TOKEN = os.getenv("API_TOKEN") # 验证必要的环境变量 if not API_URL or not API_TOKEN: raise ValueError("请确保设置了环境变量 API_URL 和 API_TOKEN") print(f"[INFO] starting:") print(f"[INFO] API_URL: {API_URL[:6]}...{API_URL[-13:]}") print(f"[INFO] API_TOKEN: {API_TOKEN[:10]}...{API_TOKEN[-10:]}") # 只显示token的前10位和后10位 """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) headers = { "Content-Type": "application/json", "Authorization": f"Bearer {API_TOKEN}" } data = { "model": "/data/DMind-1-mini", "stream": False, "messages": messages, "temperature": temperature, "top_p": top_p, "top_k": 20, "min_p": 0.1 } print(f"[INFO] process user msg...") print(f"[INFO] sysMsg: {system_message}") print(f"[INFO] userMsg: {message}") print(f"[INFO] modelParam: temperature={temperature}, top_p={top_p}") print(f"[INFO] reqData: {data}") try: with requests.post(API_URL, headers=headers, json=data) as r: if r.status_code != 200: print(f"[ERROR] API Error: {r.status_code} - {r.text}") return "Service error" json_response = r.json() # print(f"[DEBUG] API Response: {json.dumps(json_response, indent=2)}") if 'choices' in json_response and len(json_response['choices']) > 0: response = json_response['choices'][0].get('message', {}).get('content', '') if response: return "hello" return "No response from model" except Exception as e: print(f"[ERROR] Request error: {e}") return "Service error occurred" """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.96, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()