DMind-1-mini / app.py
nanova's picture
feat: update llm model to api
da03023
raw
history blame
2.84 kB
import gradio as gr
import requests
import json
API_URL = "https://api.whaleflux.com/whaleflux/v1/model/deployment/enova-service-8fbf8085-2d13-4583/v1/chat/completions"
API_TOKEN = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyaWQiOiJNVGMwTlRVMk5EVTROaTR4T0dNd01qUXpaVEJsTVRsaVpURmhPV1V5TkdVMk9UUTRabVppTjJNME16RmtaVGt4WkRjM056RmtPR1l4TTJFek1HRmpNek15WW1JMFlUTmpPVEUwIiwiaWF0IjoxNzQ1NTY0NTg2LCJleHAiOi0xLCJvcmdfaWQiOiIxMDAyNzA5NSIsInNjb3BlIjp7InBlcm1pc3Npb24iOm51bGx9LCJ0eXBlIjoiYXBpLXRva2VuIiwiTWFwQ2xhaW1zIjpudWxsfQ.fw6eZmOWr7gBqKd6X5duGao0MOimZ69Fv0oeBVWy0Gk"
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_TOKEN}"
}
data = {
"model": "/data/DMind-1-mini",
"stream": True,
"messages": messages,
"temperature": temperature,
"top_p": top_p,
"top_k": 20,
"min_p": 0.1
}
response = ""
with requests.post(API_URL, headers=headers, json=data, stream=True) as r:
for line in r.iter_lines():
if line:
try:
json_response = json.loads(line.decode('utf-8').replace('data: ', ''))
if 'choices' in json_response and len(json_response['choices']) > 0:
token = json_response['choices'][0].get('delta', {}).get('content', '')
if token:
response += token
yield response
except json.JSONDecodeError:
continue
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.96,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()