Spaces:
Running
Running
import gradio as gr | |
import requests | |
import json | |
import os | |
from dotenv import load_dotenv | |
# 加载.env文件中的环境变量 | |
load_dotenv() | |
# 从环境变量中读取配置 | |
API_URL = os.getenv("API_URL") | |
API_TOKEN = os.getenv("API_TOKEN") | |
# 验证必要的环境变量 | |
if not API_URL or not API_TOKEN: | |
raise ValueError("make sure API_URL & API_TOKEN") | |
print(f"[INFO] starting:") | |
print(f"[INFO] API_URL: {API_URL[:6]}...{API_URL[-12:]}") | |
print(f"[INFO] API_TOKEN: {API_TOKEN[:10]}...{API_TOKEN[-10:]}") # 只显示token的前10位和后10位 | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {API_TOKEN}" | |
} | |
data = { | |
"model": "/data/DMind-1-mini", | |
"stream": False, # 改为非流式模式 | |
"messages": messages, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": 20, | |
"min_p": 0.1 | |
} | |
print(f"[INFO] process user msg...") | |
print(f"[INFO] sysMsg: {system_message}") | |
print(f"[INFO] userMsg: {message}") | |
print(f"[INFO] modelParam: temperature={temperature}, top_p={top_p}") | |
print(f"[INFO] reqData: {data}") | |
try: | |
with requests.post(API_URL, headers=headers, json=data) as r: | |
if r.status_code == 200: | |
json_response = r.json() | |
if 'choices' in json_response and len(json_response['choices']) > 0: | |
content = json_response['choices'][0].get('message', {}).get('content', '') | |
print(f"[INFO] response: {content}") | |
if content: | |
return content | |
return "Service temporarily unavailable" | |
except Exception as e: | |
print(f"[ERROR] Request error: {e}") | |
return "Service error occurred" | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.96, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |