Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,24 @@ import transformers
|
|
4 |
import torch
|
5 |
import spaces
|
6 |
|
|
|
7 |
hf_token = os.getenv("HF_TOKEN")
|
8 |
if not hf_token:
|
9 |
raise ValueError("HF_TOKEN is not set in environment variables!")
|
10 |
|
|
|
11 |
model_id = "huihui-ai/Llama-3.3-70B-Instruct-abliterated"
|
12 |
|
13 |
-
pipeline
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
16 |
@spaces.GPU
|
17 |
def generate_response(
|
18 |
message,
|
@@ -22,17 +31,7 @@ def generate_response(
|
|
22 |
temperature,
|
23 |
top_p,
|
24 |
):
|
25 |
-
|
26 |
-
|
27 |
-
if pipeline is None:
|
28 |
-
pipeline = transformers.pipeline(
|
29 |
-
"text-generation",
|
30 |
-
model=model_id,
|
31 |
-
use_auth_token=hf_token,
|
32 |
-
model_kwargs={"torch_dtype": torch.bfloat16},
|
33 |
-
device_map="auto",
|
34 |
-
)
|
35 |
-
|
36 |
messages = [{"role": "system", "content": system_message}]
|
37 |
for user_msg, assistant_msg in history:
|
38 |
if user_msg:
|
@@ -40,8 +39,11 @@ def generate_response(
|
|
40 |
if assistant_msg:
|
41 |
messages.append({"role": "assistant", "content": assistant_msg})
|
42 |
messages.append({"role": "user", "content": message})
|
|
|
|
|
43 |
conversation = "\n".join(f"{m['role']}: {m['content']}" for m in messages)
|
44 |
|
|
|
45 |
try:
|
46 |
outputs = pipeline(
|
47 |
conversation,
|
@@ -51,11 +53,13 @@ def generate_response(
|
|
51 |
)
|
52 |
generated_text = outputs[0]["generated_text"]
|
53 |
|
|
|
54 |
response = generated_text.split("\n")[-1].replace("assistant: ", "")
|
55 |
return response
|
56 |
except Exception as e:
|
57 |
return f"Error: {str(e)}"
|
58 |
|
|
|
59 |
demo = gr.ChatInterface(
|
60 |
generate_response,
|
61 |
additional_inputs=[
|
|
|
4 |
import torch
|
5 |
import spaces
|
6 |
|
7 |
+
# Load Hugging Face token from environment variables
|
8 |
hf_token = os.getenv("HF_TOKEN")
|
9 |
if not hf_token:
|
10 |
raise ValueError("HF_TOKEN is not set in environment variables!")
|
11 |
|
12 |
+
# Model ID
|
13 |
model_id = "huihui-ai/Llama-3.3-70B-Instruct-abliterated"
|
14 |
|
15 |
+
# Initialize the pipeline at startup
|
16 |
+
pipeline = transformers.pipeline(
|
17 |
+
"text-generation",
|
18 |
+
model=model_id,
|
19 |
+
use_auth_token=hf_token,
|
20 |
+
model_kwargs={"torch_dtype": torch.bfloat16}, # Optimize memory usage
|
21 |
+
device_map="auto", # Automatically map to available GPUs
|
22 |
+
)
|
23 |
|
24 |
+
# Define the inference function with GPU allocation
|
25 |
@spaces.GPU
|
26 |
def generate_response(
|
27 |
message,
|
|
|
31 |
temperature,
|
32 |
top_p,
|
33 |
):
|
34 |
+
# Combine system, history, and user messages into a formatted input string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
messages = [{"role": "system", "content": system_message}]
|
36 |
for user_msg, assistant_msg in history:
|
37 |
if user_msg:
|
|
|
39 |
if assistant_msg:
|
40 |
messages.append({"role": "assistant", "content": assistant_msg})
|
41 |
messages.append({"role": "user", "content": message})
|
42 |
+
|
43 |
+
# Format the conversation as a single string
|
44 |
conversation = "\n".join(f"{m['role']}: {m['content']}" for m in messages)
|
45 |
|
46 |
+
# Generate a response using the preloaded pipeline
|
47 |
try:
|
48 |
outputs = pipeline(
|
49 |
conversation,
|
|
|
53 |
)
|
54 |
generated_text = outputs[0]["generated_text"]
|
55 |
|
56 |
+
# Extract and return the assistant's response
|
57 |
response = generated_text.split("\n")[-1].replace("assistant: ", "")
|
58 |
return response
|
59 |
except Exception as e:
|
60 |
return f"Error: {str(e)}"
|
61 |
|
62 |
+
# Define the Gradio Chat Interface
|
63 |
demo = gr.ChatInterface(
|
64 |
generate_response,
|
65 |
additional_inputs=[
|