Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
4 |
-
# Load
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
def
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import AutoProcessor, AutoModel
|
5 |
|
6 |
+
# Load Fashion-CLIP model and processor
|
7 |
+
model_id = "patrickjohncyh/fashion-clip"
|
8 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
9 |
+
model = AutoModel.from_pretrained(model_id)
|
10 |
|
11 |
+
def compute_embeddings(input_data, input_type="image"):
|
12 |
+
if input_type == "image":
|
13 |
+
image = Image.open(input_data)
|
14 |
+
inputs = processor(images=image, return_tensors="pt")
|
15 |
+
outputs = model.get_image_features(**inputs)
|
16 |
+
else: # text
|
17 |
+
inputs = processor(text=input_data, return_tensors="pt")
|
18 |
+
outputs = model.get_text_features(**inputs)
|
19 |
+
return outputs.detach().numpy()
|
20 |
|
21 |
+
def image_text_search(query, image):
|
22 |
+
# Compute embeddings
|
23 |
+
text_emb = compute_embeddings(query, input_type="text")
|
24 |
+
image_emb = compute_embeddings(image, input_type="image")
|
25 |
+
|
26 |
+
# Compute similarity (example: cosine similarity)
|
27 |
+
similarity = torch.nn.functional.cosine_similarity(
|
28 |
+
torch.tensor(text_emb), torch.tensor(image_emb), dim=1
|
29 |
+
)
|
30 |
+
return f"Similarity score: {similarity.item():.3f}"
|
31 |
+
|
32 |
+
# Gradio UI
|
33 |
+
with gr.Blocks() as demo:
|
34 |
+
gr.Markdown("# Fashion-CLIP Demo 🛍️")
|
35 |
+
with gr.Row():
|
36 |
+
text_input = gr.Textbox(label="Search Query", placeholder="e.g., 'red dress'")
|
37 |
+
image_input = gr.Image(label="Upload Fashion Item", type="filepath")
|
38 |
+
submit_btn = gr.Button("Search")
|
39 |
+
output = gr.Textbox(label="Similarity Score")
|
40 |
+
|
41 |
+
submit_btn.click(
|
42 |
+
fn=image_text_search,
|
43 |
+
inputs=[text_input, image_input],
|
44 |
+
outputs=output
|
45 |
+
)
|
46 |
+
|
47 |
+
demo.launch()
|