import gradio as gr from huggingface_hub import from_pretrained_keras import pandas as pd import numpy as np import json from matplotlib import pyplot as plt f = open('scaler.json') scaler = json.load(f) TIME_STEPS = 288 # Generated training sequences for use in the model. def create_sequences(values, time_steps=TIME_STEPS): output = [] for i in range(len(values) - time_steps + 1): output.append(values[i : (i + time_steps)]) return np.stack(output) def normalize_data(data): df_test_value = (data - scaler["mean"]) / scaler["std"] return df_test_value def plot_test_data(df_test_value): fig, ax = plt.subplots(figsize=(12, 6)) df_test_value.plot(legend=False, ax=ax) ax.set_xlabel("Time") ax.set_ylabel("Value") ax.set_title("Input Test Data") return fig def get_anomalies(df_test_value): # Create sequences from test values. x_test = create_sequences(df_test_value.values) model = from_pretrained_keras("keras-io/timeseries-anomaly-detection") # Get test MAE loss. x_test_pred = model.predict(x_test) test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1) test_mae_loss = test_mae_loss.reshape((-1)) # Detect all the samples which are anomalies. anomalies = test_mae_loss > scaler["threshold"] return anomalies def plot_anomalies(df_test_value, data, anomalies): # data i is an anomaly if samples [(i - timesteps + 1) to (i)] are anomalies anomalous_data_indices = [] for data_idx in range(TIME_STEPS - 1, len(df_test_value) - TIME_STEPS + 1): if np.all(anomalies[data_idx - TIME_STEPS + 1 : data_idx]): anomalous_data_indices.append(data_idx) df_subset = data.iloc[anomalous_data_indices] fig, ax = plt.subplots(figsize=(12, 6)) data.plot(legend=False, ax=ax) df_subset.plot(legend=False, ax=ax, color="r") ax.set_xlabel("Time") ax.set_ylabel("Value") ax.set_title("Anomalous Data Points") return fig def format_output(plot, indices): # Create a new figure and axis for the combined output fig_combined, (ax_plot, ax_text) = plt.subplots(nrows=2, figsize=(12, 8), gridspec_kw={'height_ratios': [6, 1]}) # Add the plot to the top axis fig, ax = plot ax_plot.imshow(fig.canvas.renderer.buffer_rgba()) ax_plot.axis('off') # Add the text to the bottom axis ax_text.text(0.5, 0, f"Anomalous Data Indices: {', '.join(indices)}", fontsize=12, ha='center') ax_text.axis('off') return fig_combined, None def master(file): # read file data = pd.read_csv(file, parse_dates=True, index_col="timestamp") df_test_value = normalize_data(data) # plot input test data plot1 = plot_test_data(df_test_value) # predict anomalies = get_anomalies(df_test_value) # plot anomalous data points plot2 = plot_anomalies(df_test_value, data, anomalies) # format output anomalous_data_indices_str = ", ".join(map(str, np.where(anomalies)[0])) return format_output(plot2, anomalous_data_indices_str) outputs = gr.outputs.Image() iface = gr.Interface( fn=master, inputs=gr.inputs.File(label="CSV File"), outputs=outputs, examples=["art_daily_jumpsup.csv"], title="Timeseries Anomaly Detection Using an Autoencoder", description="Anomaly detection of timeseries data." ) iface.launch()