Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,14 @@
|
|
1 |
import gradio
|
|
|
2 |
from transformers import ViTForImageClassification
|
3 |
|
4 |
# Load the ViT model
|
5 |
model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224-in21k")
|
6 |
|
|
|
|
|
|
|
|
|
7 |
# Create a Gradio interface
|
8 |
interface = gradio.Interface(
|
9 |
fn=model,
|
@@ -13,5 +18,8 @@ interface = gradio.Interface(
|
|
13 |
description="This Gradio app allows you to classify images using a Vision Transformer (ViT) model."
|
14 |
)
|
15 |
|
|
|
|
|
|
|
16 |
# Launch the Gradio app
|
17 |
interface.launch()
|
|
|
1 |
import gradio
|
2 |
+
import numpy as np
|
3 |
from transformers import ViTForImageClassification
|
4 |
|
5 |
# Load the ViT model
|
6 |
model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224-in21k")
|
7 |
|
8 |
+
# Define a function to convert a NumPy array to a torch tensor
|
9 |
+
def numpy_to_tensor(array):
|
10 |
+
return torch.from_numpy(array).float()
|
11 |
+
|
12 |
# Create a Gradio interface
|
13 |
interface = gradio.Interface(
|
14 |
fn=model,
|
|
|
18 |
description="This Gradio app allows you to classify images using a Vision Transformer (ViT) model."
|
19 |
)
|
20 |
|
21 |
+
# Set the input block to handle NumPy arrays
|
22 |
+
interface.inputs[0].type = numpy_to_tensor
|
23 |
+
|
24 |
# Launch the Gradio app
|
25 |
interface.launch()
|