DHEIVER commited on
Commit
00ce18d
·
1 Parent(s): 2ed3244

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -22
app.py CHANGED
@@ -17,28 +17,16 @@ classifier = VisionClassifierInference(
17
 
18
  # Define a function to classify and overlay the label on the image
19
  def classify_image_with_overlay(img):
20
- # Predict the label
21
- label = classifier.predict(img_path=img)
22
-
23
- # Load the image using OpenCV
24
- image = cv2.imread(img)
25
-
26
- # Add a white rectangle for the label
27
- font = cv2.FONT_HERSHEY_SIMPLEX
28
- org = (10, 30)
29
- font_scale = 1
30
- color = (255, 255, 255) # White color
31
- thickness = 2
32
- text_size = cv2.getTextSize(label, font, font_scale, thickness)[0]
33
- cv2.rectangle(image, (org[0] - 10, org[1] - text_size[1] - 10), (org[0] + text_size[0], org[1]), color, cv2.FILLED)
34
-
35
- # Put the label text on the white rectangle
36
- cv2.putText(image, label, org, font, font_scale, (0, 0, 0), thickness, cv2.LINE_AA)
37
-
38
- # Convert the image to RGB format for Gradio
39
- image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
40
-
41
- return image_rgb
42
 
43
  iface = gr.Interface(
44
  fn=classify_image_with_overlay,
 
17
 
18
  # Define a function to classify and overlay the label on the image
19
  def classify_image_with_overlay(img):
20
+ # Converte a imagem NumPy ndarray para um objeto Pillow Image
21
+ img_pil = Image.fromarray(img)
22
+
23
+ # Realiza a classificação usando o modelo e adiciona o rótulo previsto à imagem
24
+ image_with_text = classificar_imagem(img_pil)
25
+
26
+ # Converte a imagem resultante de volta para NumPy ndarray
27
+ image_with_text_np = np.array(image_with_text)
28
+
29
+ return image_with_text_np
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  iface = gr.Interface(
32
  fn=classify_image_with_overlay,