DHEIVER's picture
Update app.py
c5f5082
raw
history blame
1.09 kB
import gradio as gr
from transformers import ViTFeatureExtractor, ViTForImageClassification
from hugsvision.inference.VisionClassifierInference import VisionClassifierInference
# Load the pre-trained ViT model
path = "mrm8488/vit-base-patch16-224_finetuned-kvasirv2-colonoscopy"
classifier = VisionClassifierInference(
feature_extractor=ViTFeatureExtractor.from_pretrained(path),
model=ViTForImageClassification.from_pretrained(path),
)
# Define a Gradio interface
def classify_image(image_file):
"""Classify an image using a pre-trained ViT model."""
label = classifier.predict(img_path=image_file.name)
# Add a confidence score to the output
confidence = classifier.predict_proba(img_path=image_file.name)[0][label]
return f"Predicted class: {label} (confidence: {confidence:.2f})"
iface = gr.Interface(
fn=classify_image,
inputs=gr.inputs.Image(type="filepath", label="Upload an image"),
outputs="text",
title="Image Classifier",
description="Classify images using a pre-trained ViT model",
)
# Launch the Gradio app
iface.launch()