|
import gradio as gr |
|
from transformers import ViTFeatureExtractor, ViTForImageClassification |
|
import numpy as np |
|
|
|
|
|
id2label = { |
|
"0": "dyed-lifted-polyps", |
|
"1": "dyed-resection-margins", |
|
"2": "esophagitis", |
|
"3": "normal-cecum", |
|
"4": "normal-pylorus", |
|
"5": "normal-z-line", |
|
"6": "polyps", |
|
"7": "ulcerative-colitis" |
|
} |
|
|
|
|
|
model_name = "mrm8488/vit-base-patch16-224_finetuned-kvasirv2-colonoscopy" |
|
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name) |
|
model = ViTForImageClassification.from_pretrained(model_name) |
|
|
|
|
|
def classify_image(input_image): |
|
|
|
inputs = feature_extractor(input_image, return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
|
|
predicted_class_id = np.argmax(outputs.logits) |
|
|
|
predicted_class_label = id2label.get(str(predicted_class_id), "Desconhecido") |
|
return predicted_class_label |
|
|
|
|
|
interface = gr.Interface( |
|
fn=classify_image, |
|
inputs=gr.inputs.Image(type="numpy", label="Carregar uma imagem"), |
|
outputs=gr.outputs.Label(num_top_classes=1), |
|
title="Classificador de Imagem ViT", |
|
description="Esta aplicação Gradio permite classificar imagens usando um modelo Vision Transformer (ViT).", |
|
) |
|
|
|
|
|
interface.launch() |
|
|