File size: 853 Bytes
9da5b91
758c978
 
70a751e
758c978
 
 
 
 
 
70a751e
758c978
406e1b2
758c978
 
01d090f
70a751e
406e1b2
758c978
 
 
 
70a751e
 
758c978
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import gradio as gr
from transformers import ViTFeatureExtractor, ViTForImageClassification
from hugsvision.inference.VisionClassifierInference import VisionClassifierInference

# Load the pre-trained ViT model
path = "mrm8488/vit-base-patch16-224_finetuned-kvasirv2-colonoscopy"
classifier = VisionClassifierInference(
    feature_extractor=ViTFeatureExtractor.from_pretrained(path),
    model=ViTForImageClassification.from_pretrained(path),
)

# Define a Gradio interface
def classify_image(img):
    label = classifier.predict(img_path=img)
    return f"Predicted class: {label}"

iface = gr.Interface(
    fn=classify_image,
    inputs=gr.inputs.Image(type="file", label="Upload an image"),
    outputs="text",
    title="Image Classifier",
    description="Classify images using a pre-trained ViT model",
)

# Launch the Gradio app
iface.launch()