File size: 8,016 Bytes
a73f817
9bf186c
6bd3626
a73f817
6bd3626
8a2c75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf186c
8a2c75b
 
 
 
 
 
 
 
 
 
9bf186c
 
 
 
8a2c75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf186c
8a2c75b
 
 
 
 
 
 
 
 
 
9bf186c
 
 
 
8a2c75b
 
 
 
6bd3626
 
9bf186c
6bd3626
 
 
 
8a2c75b
9bf186c
6bd3626
a84fed4
6bd3626
9bf186c
6bd3626
9bf186c
 
6bd3626
 
 
a84fed4
 
 
 
 
6bd3626
a84fed4
 
 
 
6bd3626
 
 
9bf186c
 
 
 
 
 
 
6bd3626
 
bb97b78
9bf186c
bb97b78
8a2c75b
6bd3626
9bf186c
50f7f91
9bf186c
 
50f7f91
e07965d
 
 
bb97b78
9bf186c
e07965d
9bf186c
 
 
e07965d
 
 
9bf186c
 
e07965d
 
 
9bf186c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e07965d
9bf186c
 
e07965d
9bf186c
50f7f91
e07965d
 
9bf186c
 
 
 
 
 
 
 
8a2c75b
50f7f91
9bf186c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2c75b
9bf186c
 
 
 
 
 
8a2c75b
 
 
6bd3626
a73f817
 
6bd3626
50f7f91
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gradio as gr
from typing import List, Dict
from gradio_client import Client

def create_chat_app():
    # Language configurations
    TRANSLATIONS = {
        "en": {
            "title": "🤖 Chat with Llama 3.3 70B",
            "description": """
            This is a chatbot based on the Llama 3.3 70B model. To use:
            1. Type your message in the field below
            2. Adjust parameters as needed
            3. Press Enter to send
            """,
            "system_message": "You are a helpful and friendly assistant based on the Llama 3.3 70B model.",
            "system_message_label": "System Message",
            "max_tokens_label": "Maximum Tokens",
            "temperature_label": "Temperature",
            "top_p_label": "Top-p (Nucleus Sampling)",
            "message_placeholder": "Type your message here...",
            "info_section": """
            ### ℹ️ Information
            - Model: Llama 3.3 70B Instruct
            - Language: English/Portuguese
            - Hosting: Hugging Face Spaces
            
            For best performance, adjust the parameters according to your needs.
            """,
            "error_message": "Sorry, an error occurred: {}\nPlease check your connection and settings.",
            "examples": [
                "Hello! How are you?",
                "Can you explain what artificial intelligence is?",
                "What is the capital of Brazil?",
                "Help me write a Python code to calculate Fibonacci."
            ]
        },
        "pt": {
            "title": "🤖 Chat com Llama 3.3 70B em Português",
            "description": """
            Este é um chatbot baseado no modelo Llama 3.3 70B. Para usar:
            1. Digite sua mensagem no campo abaixo
            2. Ajuste os parâmetros conforme necessário
            3. Pressione Enter para enviar
            """,
            "system_message": "Você é um assistente amigável e prestativo que responde em português. Você é baseado no modelo Llama 3.3 70B.",
            "system_message_label": "Mensagem do Sistema",
            "max_tokens_label": "Máximo de Tokens",
            "temperature_label": "Temperatura",
            "top_p_label": "Top-p (Amostragem Nucleus)",
            "message_placeholder": "Digite sua mensagem aqui...",
            "info_section": """
            ### ℹ️ Informações
            - Modelo: Llama 3.3 70B Instruct
            - Idioma: Português/Inglês
            - Hospedagem: Hugging Face Spaces
            
            Para melhor desempenho, ajuste os parâmetros de acordo com suas necessidades.
            """,
            "error_message": "Desculpe, ocorreu um erro: {}\nPor favor, verifique sua conexão e configurações.",
            "examples": [
                "Olá! Como você está?",
                "Pode me explicar o que é inteligência artificial?",
                "Qual é a capital do Brasil?",
                "Me ajude a escrever um código em Python para calcular fibonacci."
            ]
        }
    }

    def respond(
        message: str,
        chat_history: List[Dict],
        system_message: str,
        max_tokens: int,
        temperature: float,
        top_p: float,
        language: str,
    ):
        try:
            client = Client("aifeifei798/feifei-chat")
            
            # Format conversation history
            formatted_message = f"{system_message}\n\nConversation history:\n"
            for msg in chat_history:
                formatted_message += f"{msg['role']}: {msg['content']}\n"
            
            formatted_message += f"User: {message}"
            
            message_payload = {
                "text": formatted_message,
                "files": []
            }
            
            response = client.predict(
                message=message_payload,
                feifei_select=True,
                additional_dropdown="meta-llama/Llama-3.3-70B-Instruct",
                image_mod="pixtral",
                api_name="/chat"
            )
            
            # Update chat history in the new format
            chat_history.extend([
                {"role": "user", "content": message},
                {"role": "assistant", "content": response}
            ])
            
            return chat_history, ""
            
        except Exception as e:
            error_msg = TRANSLATIONS[language]["error_message"].format(str(e))
            chat_history.append({"role": "assistant", "content": error_msg})
            return chat_history, ""

    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        current_language = gr.State("en")
        
        gr.Markdown(TRANSLATIONS["en"]["title"])
        gr.Markdown(TRANSLATIONS["en"]["description"])
        
        with gr.Group():
            chatbot = gr.Chatbot(
                value=[],
                height=400,
                type="messages"  # Use the new messages format
            )
            
            message = gr.Textbox(
                placeholder=TRANSLATIONS["en"]["message_placeholder"],
                lines=3
            )
            
            with gr.Accordion("Settings", open=False):
                system_message = gr.Textbox(
                    value=TRANSLATIONS["en"]["system_message"],
                    label=TRANSLATIONS["en"]["system_message_label"]
                )
                
                with gr.Row():
                    max_tokens = gr.Slider(
                        minimum=1,
                        maximum=4096,
                        value=2048,
                        step=1,
                        label=TRANSLATIONS["en"]["max_tokens_label"]
                    )
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=2.0,
                        value=0.7,
                        step=0.1,
                        label=TRANSLATIONS["en"]["temperature_label"]
                    )
                    top_p = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.95,
                        step=0.05,
                        label=TRANSLATIONS["en"]["top_p_label"]
                    )
            
            with gr.Row():
                language_selector = gr.Radio(
                    choices=["en", "pt"],
                    value="en",
                    label="Language/Idioma",
                    interactive=True
                )
                
                clear = gr.Button("Clear")
        
        gr.Markdown(TRANSLATIONS["en"]["info_section"])
        
        gr.Examples(
            examples=TRANSLATIONS["en"]["examples"],
            inputs=message
        )
        
        # Event handlers
        message.submit(
            respond,
            [message, chatbot, system_message, max_tokens, temperature, top_p, language_selector],
            [chatbot, message]
        )
        
        clear.click(lambda: ([], ""), outputs=[chatbot, message])
        
        # Update interface text when language changes
        def update_language(lang):
            trans = TRANSLATIONS[lang]
            return (
                trans["message_placeholder"],
                trans["system_message"],
                trans["system_message_label"],
                trans["max_tokens_label"],
                trans["temperature_label"],
                trans["top_p_label"]
            )
        
        language_selector.change(
            update_language,
            inputs=[language_selector],
            outputs=[
                message,
                system_message,
                system_message,  # For label
                max_tokens,      # For label
                temperature,     # For label
                top_p           # For label
            ]
        )

    return demo

if __name__ == "__main__":
    demo = create_chat_app()
    demo.launch(share=False)