import gradio as gr from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration, pipeline import time # Carregando o modelo BLIP para geração de legendas processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model_blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") # Carregando um modelo de geração de texto (exemplo: GPT-2) generator = pipeline('text-generation', model='gpt2') # Função para gerar legenda da imagem def caption(img, min_len, max_len): raw_image = Image.open(img).convert('RGB') inputs = processor(raw_image, return_tensors="pt") out = model_blip.generate(**inputs, min_length=min_len, max_length=max_len) return processor.decode(out[0], skip_special_tokens=True) # Função para gerar informações nutricionais e calorias def generate_nutritional_info(food_description, language): if language == "Português": prompt = f"Descreva as informações nutricionais e as calorias do seguinte alimento: {food_description}." else: prompt = f"Provide detailed nutritional information and calories for the following food: {food_description}." result = generator(prompt, max_length=150, num_return_sequences=1) return result[0]['generated_text'] # Função principal que combina tudo def greet(img, min_len, max_len, language): start = time.time() # Passo 1: Gerar legenda para a imagem food_description = caption(img, min_len, max_len) # Passo 2: Gerar informações nutricionais e calorias com base na legenda nutritional_info = generate_nutritional_info(food_description, language) end = time.time() total_time = str(end - start) # Combinando resultados if language == "Português": result = f"Descrição do Alimento: {food_description}\n\nInformações Nutricionais:\n{nutritional_info}\n\nGerado em {total_time} segundos." else: result = f"Food Description: {food_description}\n\nNutritional Information:\n{nutritional_info}\n\nGenerated in {total_time} seconds." return result # Interface Gradio iface = gr.Interface( fn=greet, title='Nutritionist Agent with BLIP and GPT-2', description="Upload an image of food, and the agent will describe it and provide nutritional information.", inputs=[ gr.Image(type='filepath', label='Image'), gr.Slider(label='Minimum Length', minimum=1, maximum=1000, value=30), gr.Slider(label='Maximum Length', minimum=1, maximum=1000, value=100), gr.Radio(choices=["Português", "English"], label="Language", value="Português") # Botão de seleção de idioma ], outputs=gr.Textbox(label='Result'), theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate"), ) iface.launch()