Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
from PIL import Image | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
import time | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") | |
def caption(img, min_len, max_len): | |
raw_image = Image.open(img).convert('RGB') | |
inputs = processor(raw_image, return_tensors="pt") | |
out = model.generate(**inputs, min_length=min_len, max_length=max_len) | |
return processor.decode(out[0], skip_special_tokens=True) | |
def greet(img, min_len, max_len): | |
start = time.time() | |
result = caption(img, min_len, max_len) | |
end = time.time() | |
total_time = str(end - start) | |
result = result + '\n' + total_time + ' seconds' | |
return result | |
iface = gr.Interface(fn=greet, | |
title='Blip Image Captioning Large', | |
description="[Salesforce/blip-image-captioning-large](https://huggingface.co/Salesforce/blip-image-captioning-large) Runs on CPU", | |
inputs=[gr.Image(type='filepath', label='Image'), gr.Slider(label='Minimum Length', minimum=1, maximum=1000, value=30), gr.Slider(label='Maximum Length', minimum=1, maximum=1000, value=100)], | |
outputs=gr.Textbox(label='Caption'), | |
theme = gr.themes.Base(primary_hue="teal",secondary_hue="teal",neutral_hue="slate"),) | |
iface.launch() |