DHEIVER's picture
Update app.py
817e7fd verified
raw
history blame
2.25 kB
import gradio as gr
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration, pipeline
import time
# Carregando o modelo BLIP para geração de legendas
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model_blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
# Carregando um modelo de geração de texto (exemplo: GPT-2)
generator = pipeline('text-generation', model='gpt2')
def caption(img, min_len, max_len):
raw_image = Image.open(img).convert('RGB')
inputs = processor(raw_image, return_tensors="pt")
out = model_blip.generate(**inputs, min_length=min_len, max_length=max_len)
return processor.decode(out[0], skip_special_tokens=True)
def generate_nutritional_info(food_description):
# Gerando informações nutricionais com base na descrição do alimento
prompt = f"Provide detailed nutritional information about {food_description}."
result = generator(prompt, max_length=150, num_return_sequences=1)
return result[0]['generated_text']
def greet(img, min_len, max_len):
start = time.time()
# Passo 1: Gerar legenda para a imagem
food_description = caption(img, min_len, max_len)
# Passo 2: Gerar informações nutricionais com base na legenda
nutritional_info = generate_nutritional_info(food_description)
end = time.time()
total_time = str(end - start)
# Combinando resultados
result = f"Food Description: {food_description}\n\nNutritional Information:\n{nutritional_info}\n\nGenerated in {total_time} seconds."
return result
# Interface Gradio
iface = gr.Interface(
fn=greet,
title='Nutritionist Agent with BLIP and GPT-2',
description="Upload an image of food, and the agent will describe it and provide nutritional information.",
inputs=[
gr.Image(type='filepath', label='Image'),
gr.Slider(label='Minimum Length', minimum=1, maximum=1000, value=30),
gr.Slider(label='Maximum Length', minimum=1, maximum=1000, value=100)
],
outputs=gr.Textbox(label='Result'),
theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate"),
)
iface.launch()