Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
from PIL import Image | |
from transformers import BlipProcessor, BlipForConditionalGeneration, pipeline | |
import time | |
# Carregando o modelo BLIP para geração de legendas | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
model_blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") | |
# Carregando um modelo de geração de texto (exemplo: GPT-2) | |
generator = pipeline('text-generation', model='gpt2') | |
def caption(img, min_len, max_len): | |
raw_image = Image.open(img).convert('RGB') | |
inputs = processor(raw_image, return_tensors="pt") | |
out = model_blip.generate(**inputs, min_length=min_len, max_length=max_len) | |
return processor.decode(out[0], skip_special_tokens=True) | |
def generate_nutritional_info(food_description): | |
# Gerando informações nutricionais com base na descrição do alimento | |
prompt = f"Provide detailed nutritional information about {food_description}." | |
result = generator(prompt, max_length=150, num_return_sequences=1) | |
return result[0]['generated_text'] | |
def greet(img, min_len, max_len): | |
start = time.time() | |
# Passo 1: Gerar legenda para a imagem | |
food_description = caption(img, min_len, max_len) | |
# Passo 2: Gerar informações nutricionais com base na legenda | |
nutritional_info = generate_nutritional_info(food_description) | |
end = time.time() | |
total_time = str(end - start) | |
# Combinando resultados | |
result = f"Food Description: {food_description}\n\nNutritional Information:\n{nutritional_info}\n\nGenerated in {total_time} seconds." | |
return result | |
# Interface Gradio | |
iface = gr.Interface( | |
fn=greet, | |
title='Nutritionist Agent with BLIP and GPT-2', | |
description="Upload an image of food, and the agent will describe it and provide nutritional information.", | |
inputs=[ | |
gr.Image(type='filepath', label='Image'), | |
gr.Slider(label='Minimum Length', minimum=1, maximum=1000, value=30), | |
gr.Slider(label='Maximum Length', minimum=1, maximum=1000, value=100) | |
], | |
outputs=gr.Textbox(label='Result'), | |
theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate"), | |
) | |
iface.launch() |