File size: 2,970 Bytes
193a8a4
 
 
 
471343c
 
193a8a4
471343c
 
 
53c5d75
 
 
 
 
 
 
 
193a8a4
471343c
193a8a4
 
 
471343c
193a8a4
 
471343c
193a8a4
 
471343c
 
193a8a4
 
fe71cb6
 
 
193a8a4
 
471343c
193a8a4
471343c
193a8a4
 
 
 
 
471343c
193a8a4
 
 
 
 
 
471343c
193a8a4
 
 
 
 
 
471343c
193a8a4
 
471343c
193a8a4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline


title = "Python Code Generator"
description = "This is a space to convert English text to Python code using the [codeparrot-small-text-to-code](https://huggingface.co/codeparrot/codeparrot-small-text-to-code) model, a pre-trained Python code generation model trained on a dataset of docstrings and Python code extracted from Jupyter notebooks available at [github-jupyter-text](https://huggingface.co/datasets/codeparrot/github-jupyter-text)."
example = [
    ["Utility function to calculate the precision of predictions using sklearn metrics", 65, 0.6, 42],
    ["Let's implement a function that calculates the size of a file called filepath", 60, 0.6, 42],
    ["Let's implement the Bubble Sort sorting algorithm in an auxiliary function:", 87, 0.6, 42],
    ["Function to calculate the nth Fibonacci number.", 65, 0.6, 42],
    ["Function to calculate the factorial of a number.", 65, 0.6, 42],
    ["Function to reverse a string.", 65, 0.6, 42],
    ["Function to check if a number is prime.", 65, 0.6, 42],
    ["Function to generate the Fibonacci sequence up to the nth term.", 65, 0.6, 42],
    ["Function to generate the factorial sequence up to the nth term.", 65, 0.6, 42],
]


# Change the model to the pre-trained model
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-text-to-code")
model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-text-to-code")

def create_docstring(gen_prompt):
    return "\"\"\"\n" + gen_prompt + "\n\"\"\"\n\n"

def generate_code(gen_prompt, max_tokens, temperature=0.6, seed=42):
    set_seed(seed)
    pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
    prompt = create_docstring(gen_prompt)
    generated_text = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_tokens)[0]['generated_text']
    return generated_text

def save_to_text_file(output_text):
    with open("generated_code.txt", "w") as file:
        file.write(output_text)

iface = gr.Interface(
    fn=generate_code, 
    inputs=[
        gr.Textbox(label="English instructions", placeholder="Enter English instructions..."),
        gr.inputs.Slider(
            minimum=8,
            maximum=256,
            step=1,
            default=8,
            label="Number of tokens to generate",
        ),
        gr.inputs.Slider(
            minimum=0,
            maximum=2.5,
            step=0.1,
            default=0.6,
            label="Temperature",
        ),
        gr.inputs.Slider(
            minimum=0,
            maximum=1000,
            step=1,
            default=42,
            label="Random seed for generation"
        )
    ],
    outputs=gr.Code(label="Generated Python code", language="python", lines=10),
    examples=example,
    layout="horizontal",
    theme="peach",
    description=description,
    title=title
)
iface.launch()