DHEIVER's picture
Create app.py
7b945e6 verified
raw
history blame
5.11 kB
import gradio as gr
from transformers import (
AutoProcessor,
AutoModelForVision2Seq,
BlipProcessor,
BlipForQuestionAnswering,
OFATokenizer,
OFAModel
)
from PIL import Image
import torch
import warnings
warnings.filterwarnings("ignore")
class IridologyAnalyzer:
def __init__(self):
# Inicializar modelos
print("Carregando modelos...")
# GIT model
self.git_processor = AutoProcessor.from_pretrained("microsoft/git-base-vqa")
self.git_model = AutoModelForVision2Seq.from_pretrained("microsoft/git-base-vqa")
# BLIP model
self.blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
self.blip_model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
# OFA model
self.ofa_tokenizer = OFATokenizer.from_pretrained("OFA-Sys/ofa-base")
self.ofa_model = OFAModel.from_pretrained("OFA-Sys/ofa-base")
# Perguntas predefinidas para análise de iridologia
self.iridology_questions = [
"What is the color pattern of the iris?",
"Are there any dark spots or marks in the iris?",
"What is the texture of the iris?",
"Are there any rings or circles in the iris?",
"What is the condition of the pupil?",
"Are there any lines radiating from the pupil?",
"Is there any discoloration in specific areas?",
"What is the overall clarity of the iris?"
]
print("Modelos carregados com sucesso!")
def analyze_with_git(self, image, question):
inputs = self.git_processor(images=image, text=question, return_tensors="pt")
outputs = self.git_model.generate(
**inputs,
max_length=50,
num_beams=4,
early_stopping=True
)
return self.git_processor.batch_decode(outputs, skip_special_tokens=True)[0]
def analyze_with_blip(self, image, question):
inputs = self.blip_processor(image, question, return_tensors="pt")
outputs = self.blip_model.generate(**inputs)
return self.blip_processor.decode(outputs[0], skip_special_tokens=True)
def analyze_with_ofa(self, image, question):
inputs = self.ofa_tokenizer([question], return_tensors="pt")
img = self.ofa_tokenizer(images=image, return_tensors="pt").pixel_values
outputs = self.ofa_model.generate(
input_ids=inputs.input_ids,
pixel_values=img,
max_length=50,
num_beams=4
)
return self.ofa_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
def comprehensive_analysis(self, image):
"""Realiza uma análise completa usando todos os modelos e questões predefinidas."""
results = []
for question in self.iridology_questions:
# Análise com cada modelo
git_result = self.analyze_with_git(image, question)
blip_result = self.analyze_with_blip(image, question)
ofa_result = self.analyze_with_ofa(image, question)
results.append({
"question": question,
"git_analysis": git_result,
"blip_analysis": blip_result,
"ofa_analysis": ofa_result
})
# Formatar resultados
formatted_results = "Análise Detalhada de Iridologia:\n\n"
for result in results:
formatted_results += f"Pergunta: {result['question']}\n"
formatted_results += f"GIT: {result['git_analysis']}\n"
formatted_results += f"BLIP: {result['blip_analysis']}\n"
formatted_results += f"OFA: {result['ofa_analysis']}\n"
formatted_results += "-" * 50 + "\n"
return formatted_results
def create_gradio_interface():
analyzer = IridologyAnalyzer()
def process_image(image):
if image is None:
return "Por favor, faça o upload de uma imagem."
# Converter para PIL Image se necessário
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Realizar análise
try:
return analyzer.comprehensive_analysis(image)
except Exception as e:
return f"Erro durante a análise: {str(e)}"
# Interface Gradio
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil", label="Upload da Imagem do Olho"),
outputs=gr.Textbox(label="Resultados da Análise", lines=20),
title="Analisador de Iridologia com IA",
description="""
Este sistema analisa imagens de íris usando múltiplos modelos de IA para identificar padrões relevantes para iridologia.
Faça o upload de uma imagem clara do olho para análise.
""",
examples=[],
cache_examples=True
)
return iface
if __name__ == "__main__":
iface = create_gradio_interface()
iface.launch(share=True)