DHEIVER's picture
Update app.py
6b8a93c verified
raw
history blame
11.3 kB
import gradio as gr
import cv2
import numpy as np
from dataclasses import dataclass
from typing import Dict, List, Tuple
from datetime import datetime
@dataclass
class IrisZone:
name: str
ratio: Tuple[float, float] # (inner, outer)
color: Tuple[int, int, int]
conditions: Dict[str, List[str]] # Detailed health conditions
recommendations: Dict[str, List[str]]
class IrisAnalyzer:
def __init__(self):
self.zones = [
IrisZone(
name="Zona Cerebral/Neural",
ratio=(0.85, 1.0),
color=(255, 0, 0),
conditions={
"baixa": [
"Possível fadiga neural crônica",
"Indicadores de estresse prolongado",
"Sinais de insônia ou distúrbios do sono",
"Possível déficit de vitamina B12"
],
"media": ["Estado neural estável", "Função cognitiva normal"],
"alta": ["Excelente saúde neural", "Ótima resposta cognitiva"]
},
recommendations={
"baixa": [
"Suplementação de vitamina B12",
"Técnicas de meditação diária",
"Melhorar qualidade do sono",
"Reduzir exposição a telas"
],
"media": ["Manter rotina de sono", "Exercícios mentais regulares"],
"alta": ["Manter práticas atuais", "Exercícios de mindfulness"]
}
),
IrisZone(
name="Zona Digestiva",
ratio=(0.7, 0.85),
color=(0, 255, 0),
conditions={
"baixa": [
"Possível inflamação intestinal",
"Sinais de má absorção",
"Indicadores de disbiose",
"Possível deficiência enzimática"
],
"media": ["Digestão funcional", "Absorção adequada"],
"alta": ["Excelente saúde digestiva", "Ótima absorção"]
},
recommendations={
"baixa": [
"Probióticos específicos",
"Enzimas digestivas",
"Dieta anti-inflamatória",
"Eliminar alimentos processados"
],
"media": ["Manter dieta balanceada", "Hidratação adequada"],
"alta": ["Manter dieta atual", "Rotina alimentar saudável"]
}
),
IrisZone(
name="Zona Respiratória",
ratio=(0.55, 0.7),
color=(0, 0, 255),
conditions={
"baixa": [
"Possível comprometimento respiratório",
"Sinais de baixa oxigenação",
"Indicadores de congestão brônquica",
"Possível sensibilidade respiratória"
],
"media": ["Função respiratória adequada", "Oxigenação normal"],
"alta": ["Excelente capacidade respiratória", "Ótima oxigenação"]
},
recommendations={
"baixa": [
"Exercícios respiratórios diários",
"Avaliar qualidade do ar",
"Considerar atividades aeróbicas",
"Técnicas de respiração profunda"
],
"media": ["Manter exercícios regulares", "Praticar respiração consciente"],
"alta": ["Continuar práticas saudáveis", "Manter atividades aeróbicas"]
}
),
IrisZone(
name="Zona Circulatória",
ratio=(0.4, 0.55),
color=(255, 255, 0),
conditions={
"baixa": [
"Possível circulação periférica reduzida",
"Indicadores de estagnação sanguínea",
"Sinais de baixo fluxo sanguíneo",
"Possível deficiência de ferro"
],
"media": ["Circulação adequada", "Fluxo sanguíneo normal"],
"alta": ["Excelente circulação", "Ótimo fluxo sanguíneo"]
},
recommendations={
"baixa": [
"Aumentar atividade física",
"Considerar suplementação de ferro",
"Massagens circulatórias",
"Hidratação adequada"
],
"media": ["Manter exercícios regulares", "Alimentação rica em ferro"],
"alta": ["Manter rotina atual", "Continuar exercícios"]
}
),
IrisZone(
name="Zona Linfática",
ratio=(0.25, 0.4),
color=(255, 0, 255),
conditions={
"baixa": [
"Sistema linfático congestionado",
"Possível retenção de líquidos",
"Indicadores de toxicidade",
"Baixa resposta imunológica"
],
"media": ["Sistema linfático funcional", "Drenagem adequada"],
"alta": ["Excelente drenagem linfática", "Ótima desintoxicação"]
},
recommendations={
"baixa": [
"Drenagem linfática regular",
"Aumentar consumo de água",
"Exercícios específicos",
"Dieta desintoxicante"
],
"media": ["Manter hidratação", "Exercícios leves regulares"],
"alta": ["Manter hábitos atuais", "Continuar atividades físicas"]
}
),
IrisZone(
name="Zona Endócrina",
ratio=(0.15, 0.25),
color=(0, 255, 255),
conditions={
"baixa": [
"Possível desequilíbrio hormonal",
"Sinais de estresse adrenal",
"Indicadores de fadiga endócrina",
"Possível disfunção tireoidiana"
],
"media": ["Sistema endócrino estável", "Função hormonal adequada"],
"alta": ["Excelente equilíbrio hormonal", "Ótima função endócrina"]
},
recommendations={
"baixa": [
"Gestão do estresse",
"Suporte adrenal natural",
"Regular ciclo sono-vigília",
"Alimentação rica em iodo"
],
"media": ["Manter rotina regular", "Cuidar do sono"],
"alta": ["Manter equilíbrio atual", "Continuar boas práticas"]
}
),
IrisZone(
name="Zona Pupilar",
ratio=(0, 0.15),
color=(128, 128, 128),
conditions={
"baixa": [
"Sistema nervoso autônomo sobrecarregado",
"Possível desequilíbrio simpático/parassimpático",
"Indicadores de estresse crônico",
"Sinais de fadiga autonômica"
],
"media": ["SNA equilibrado", "Resposta autonômica normal"],
"alta": ["Excelente regulação autonômica", "Ótimo equilíbrio do SNA"]
},
recommendations={
"baixa": [
"Técnicas de relaxamento",
"Práticas de mindfulness",
"Regular rotina diária",
"Exercícios de respiração"
],
"media": ["Manter práticas relaxantes", "Continuar boa rotina"],
"alta": ["Manter equilíbrio atual", "Continuar práticas saudáveis"]
}
)
]
def analyze_iris(self, image: np.ndarray) -> Dict:
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
center = (image.shape[1]//2, image.shape[0]//2)
radius = min(image.shape[:2])//4
results = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"analysis": {},
"recommendations": []
}
for zone in self.zones:
inner_r = int(radius * zone.ratio[0])
outer_r = int(radius * zone.ratio[1])
mask = np.zeros(gray.shape, dtype=np.uint8)
cv2.circle(mask, center, outer_r, 255, -1)
cv2.circle(mask, center, inner_r, 0, -1)
zone_intensity = cv2.mean(gray, mask=mask)[0]
# Análise detalhada baseada na intensidade
if zone_intensity < 85:
level = "baixa"
elif zone_intensity < 170:
level = "media"
else:
level = "alta"
results["analysis"][zone.name] = {
"conditions": zone.conditions[level],
"recommendations": zone.recommendations[level],
"intensity": float(zone_intensity),
"status": level
}
# Marcar zona na imagem
cv2.circle(image, center, outer_r, zone.color, 2)
cv2.putText(image, zone.name,
(center[0]-outer_r, center[1]+outer_r),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, zone.color, 1)
return image, results
def process_image(img):
if img is None:
return None, "Favor carregar uma imagem."
analyzer = IrisAnalyzer()
processed_img, results = analyzer.analyze_iris(img)
report = "# Análise Detalhada da Íris\n\n"
for zone_name, analysis in results["analysis"].items():
report += f"## {zone_name}\n\n"
report += "### Condições Identificadas:\n"
for condition in analysis["conditions"]:
report += f"- {condition}\n"
report += "\n### Recomendações:\n"
for rec in analysis["recommendations"]:
report += f"- {rec}\n\n"
return processed_img, report
interface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="numpy"),
outputs=[
gr.Image(label="Análise Visual"),
gr.Markdown(label="Relatório Detalhado")
],
title="Análise Iridológica Detalhada",
description="⚠️ Sistema apenas para fins educacionais. Não substitui diagnóstico médico."
)
if __name__ == "__main__":
interface.launch()