File size: 5,127 Bytes
7b945e6
78b9561
5db4e41
 
 
 
7b945e6
5db4e41
 
86f1dcc
 
 
340e897
86f1dcc
 
340e897
86f1dcc
5db4e41
 
 
86f1dcc
5db4e41
 
 
 
 
 
 
 
86f1dcc
7b945e6
5db4e41
 
 
 
 
 
 
 
 
 
 
86f1dcc
 
340e897
 
 
86f1dcc
340e897
bd95651
86f1dcc
 
 
340e897
 
86f1dcc
 
 
 
340e897
 
86f1dcc
bd95651
86f1dcc
 
 
 
 
78b9561
86f1dcc
340e897
 
5db4e41
 
 
86f1dcc
 
 
5db4e41
86f1dcc
 
 
 
 
 
 
 
 
 
 
 
 
340e897
 
 
86f1dcc
 
 
 
340e897
 
86f1dcc
340e897
 
 
86f1dcc
 
 
 
 
340e897
 
5db4e41
 
340e897
 
 
 
 
5db4e41
340e897
86f1dcc
 
340e897
 
86f1dcc
 
 
340e897
86f1dcc
340e897
86f1dcc
340e897
86f1dcc
 
340e897
86f1dcc
340e897
 
 
86f1dcc
 
 
 
340e897
86f1dcc
a75511c
7b945e6
340e897
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio as gr
import cv2
import numpy as np
from PIL import Image
from dataclasses import dataclass
from typing import Tuple, Dict, List
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
import logging
from datetime import datetime

# Configuração básica de logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)

@dataclass
class IrisZone:
    """Classe para definir as características de uma zona da íris"""
    name: str
    inner_ratio: float
    outer_ratio: float
    color: Tuple[int, int, int]
    angle_start: float = 0
    angle_end: float = 360

class IrisAnalyzer:
    """Classe principal para análise da íris"""
    def __init__(self):
        self.zones = [
            IrisZone("Zona Cerebral/Neural", 0.85, 1.0, (255, 0, 0)),
            IrisZone("Zona Digestiva", 0.7, 0.85, (0, 255, 0)),
            IrisZone("Zona Respiratória", 0.55, 0.7, (0, 0, 255)),
            IrisZone("Zona Circulatória", 0.4, 0.55, (255, 255, 0)),
            IrisZone("Zona Linfática", 0.25, 0.4, (255, 0, 255)),
            IrisZone("Zona Endócrina", 0.15, 0.25, (0, 255, 255)),
            IrisZone("Zona Pupilar", 0, 0.15, (128, 128, 128))
        ]

    def detect_pupil(self, img: np.ndarray) -> Tuple[int, int, int]:
        """Detecta a pupila na imagem"""
        try:
            gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
            blur = cv2.GaussianBlur(gray, (5,5), 0)
            _, thresh = cv2.threshold(blur, 30, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
            
            contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            
            if not contours:
                return None
            
            # Encontrar o maior contorno circular
            max_area = 0
            best_contour = None
            
            for contour in contours:
                area = cv2.contourArea(contour)
                if area > max_area:
                    max_area = area
                    best_contour = contour
            
            if best_contour is None:
                return None
                
            (x, y), radius = cv2.minEnclosingCircle(best_contour)
            return (int(x), int(y), int(radius))
            
        except Exception as e:
            logging.error(f"Erro na detecção da pupila: {str(e)}")
            return None

    def analyze_iris(self, img: np.ndarray) -> Tuple[np.ndarray, Dict]:
        """Análise principal da íris"""
        try:
            output_img = img.copy()
            results = {}
            
            pupil = self.detect_pupil(img)
            if pupil is None:
                return img, {"Erro": "Não foi possível detectar a pupila"}
                
            x, y, pupil_radius = pupil
            iris_radius = pupil_radius * 4
            
            cv2.circle(output_img, (x, y), pupil_radius, (0, 0, 0), 2)
            
            for zone in self.zones:
                inner_r = int(iris_radius * zone.inner_ratio)
                outer_r = int(iris_radius * zone.outer_ratio)
                
                cv2.circle(output_img, (x, y), outer_r, zone.color, 2)
                
                # Análise simplificada da zona
                mask = np.zeros(img.shape[:2], dtype=np.uint8)
                cv2.circle(mask, (x, y), outer_r, 255, -1)
                cv2.circle(mask, (x, y), inner_r, 0, -1)
                
                mean_color = cv2.mean(img, mask=mask)
                results[zone.name] = f"Intensidade média: {mean_color[0]:.1f}"
                
                # Adicionar rótulo
                cv2.putText(output_img, zone.name, 
                           (x - iris_radius, y + outer_r),
                           cv2.FONT_HERSHEY_SIMPLEX, 0.5, zone.color, 1)
            
            return output_img, results
            
        except Exception as e:
            logging.error(f"Erro na análise: {str(e)}")
            return img, {"Erro": str(e)}

def process_image(img):
    """Função principal para processar imagem"""
    if img is None:
        return None, {"Erro": "Nenhuma imagem fornecida"}
    analyzer = IrisAnalyzer()
    return analyzer.analyze_iris(np.array(img))

# Interface Gradio
with gr.Blocks(theme=gr.themes.Soft()) as iface:
    gr.Markdown("""
    # 🔍 Analisador de Íris
    ### Análise de zonas da íris baseada na teoria de Jensen
    """)
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                label="Upload da imagem do olho",
                type="numpy",
                sources=["upload", "clipboard"]
            )
            
            analyze_btn = gr.Button("📸 Analisar", variant="primary")
            
        with gr.Column():
            output_image = gr.Image(label="Análise Visual")
            results = gr.JSON(label="Resultados")
    
    analyze_btn.click(
        fn=process_image,
        inputs=input_image,
        outputs=[output_image, results]
    )

if __name__ == "__main__":
    iface.launch()