DHEIVER commited on
Commit
adf2111
·
1 Parent(s): 8a0f40b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from PIL import Image
5
+ from io import BytesIO
6
+
7
+ # Load your trained model
8
+ model = tf.keras.models.load_model("best_model_weights.h5") # Replace with the path to your saved model
9
+
10
+ # Define the image classification function
11
+ def classify_image(input_image):
12
+ # Preprocess the input image
13
+ input_image = Image.open(BytesIO(input_image))
14
+ input_image = input_image.resize((img_width, img_height))
15
+ input_image = np.array(input_image) / 255.0 # Normalize pixel values
16
+
17
+ # Make a prediction using the model
18
+ predictions = model.predict(np.expand_dims(input_image, axis=0))
19
+
20
+ # Get the class label with the highest probability
21
+ class_index = np.argmax(predictions)
22
+ class_prob = predictions[0][class_index]
23
+
24
+ # Define class labels (you can replace these with your actual class labels)
25
+ class_labels = ["Normal", "Cataract"]
26
+
27
+ # Get the class label
28
+ class_label = class_labels[class_index]
29
+
30
+ return f"Predicted Class: {class_label} (Probability: {class_prob:.2f})"
31
+
32
+ # Define the Gradio interface
33
+ iface = gr.Interface(
34
+ fn=classify_image,
35
+ inputs=gr.inputs.Image(shape=(img_height, img_width)),
36
+ outputs="text",
37
+ live=True,
38
+ title="Image Classifier"
39
+ )
40
+
41
+ # Run the Gradio interface
42
+ iface.launch()