|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "TheBloke/MythoMax-L2-13B-GPTQ" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) |
|
|
|
def chat(message, history): |
|
input_text = tokenizer.apply_chat_template(history + [[None, message]], tokenize=False) |
|
inputs = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_new_tokens=300) |
|
response = tokenizer.decode(outputs[:, inputs.input_ids.shape[1]:][0], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## MythoMax AI Chatbot π¬") |
|
chatbox = gr.ChatInterface(chat) |
|
|
|
demo.launch() |
|
|