import math import os # from functools import partial # from clip_fiqa.inference import get_model, compute_quality import matplotlib.pyplot as plt import numpy as np import torch from tqdm.auto import tqdm # from torchmetrics.multimodal import CLIPImageQualityAssessment import random # from torch.nn.functional import cosine_similarity import pyiqa from util.img_utils import clear_color from .posterior_mean_variance import get_mean_processor, get_var_processor def set_seed(seed): torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) torch.cuda.manual_seed_all(seed) # torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = False __SAMPLER__ = {} def register_sampler(name: str): def wrapper(cls): if __SAMPLER__.get(name, None): raise NameError(f"Name {name} is already registered!") __SAMPLER__[name] = cls return cls return wrapper def get_sampler(name: str): if __SAMPLER__.get(name, None) is None: raise NameError(f"Name {name} is not defined!") return __SAMPLER__[name] def create_sampler(sampler, steps, noise_schedule, model_mean_type, model_var_type, dynamic_threshold, clip_denoised, rescale_timesteps, timestep_respacing=""): sampler = get_sampler(name=sampler) betas = get_named_beta_schedule(noise_schedule, steps) if not timestep_respacing: timestep_respacing = [steps] return sampler(use_timesteps=space_timesteps(steps, timestep_respacing), betas=betas, model_mean_type=model_mean_type, model_var_type=model_var_type, dynamic_threshold=dynamic_threshold, clip_denoised=clip_denoised, rescale_timesteps=rescale_timesteps) def compute_psnr(img1, img2): """ Computes the Peak Signal-to-Noise Ratio (PSNR) between two images. The images should have pixel values in the range [-1, 1]. Args: img1 (torch.Tensor): The first image tensor (e.g., reference image). Shape: (N, C, H, W) or (C, H, W). img2 (torch.Tensor): The second image tensor (e.g., generated image). Shape: same as img1. Returns: psnr (float): The computed PSNR value in decibels (dB). """ # Ensure the input tensors are in the same shape assert img1.shape == img2.shape, "Input images must have the same shape" # Compute Mean Squared Error (MSE) mse = torch.mean((img1 - img2) ** 2) # Avoid division by zero in case of identical images if mse == 0: return float('inf') # Maximum possible pixel value difference in the range [-1, 1] is 2 max_pixel_value = 2.0 # Compute PSNR psnr = 20 * torch.log10(max_pixel_value / torch.sqrt(mse)) return psnr.item() class GaussianDiffusion: def __init__(self, betas, model_mean_type, model_var_type, dynamic_threshold, clip_denoised, rescale_timesteps ): # use float64 for accuracy. betas = np.array(betas, dtype=np.float64) self.betas = betas assert self.betas.ndim == 1, "betas must be 1-D" assert (0 < self.betas).all() and (self.betas <=1).all(), "betas must be in (0..1]" self.num_timesteps = int(self.betas.shape[0]) self.rescale_timesteps = rescale_timesteps alphas = 1.0 - self.betas self.alphas = alphas self.alphas_cumprod = np.cumprod(alphas, axis=0) self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) # calculations for diffusion q(x_t | x_{t-1}) and others self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) # calculations for posterior q(x_{t-1} | x_t, x_0) self.posterior_variance = ( betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) # log calculation clipped because the posterior variance is 0 at the # beginning of the diffusion chain. self.posterior_log_variance_clipped = np.log( np.append(self.posterior_variance[1], self.posterior_variance[1:]) ) self.posterior_mean_coef1 = ( betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) self.posterior_mean_coef2 = ( (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) ) self.mean_processor = get_mean_processor(model_mean_type, betas=betas, dynamic_threshold=dynamic_threshold, clip_denoised=clip_denoised) self.var_processor = get_var_processor(model_var_type, betas=betas) def q_mean_variance(self, x_start, t): """ Get the distribution q(x_t | x_0). :param x_start: the [N x C x ...] tensor of noiseless inputs. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :return: A tuple (mean, variance, log_variance), all of x_start's shape. """ mean = extract_and_expand(self.sqrt_alphas_cumprod, t, x_start) * x_start variance = extract_and_expand(1.0 - self.alphas_cumprod, t, x_start) log_variance = extract_and_expand(self.log_one_minus_alphas_cumprod, t, x_start) return mean, variance, log_variance def q_sample(self, x_start, t): """ Diffuse the data for a given number of diffusion steps. In other words, sample from q(x_t | x_0). :param x_start: the initial data batch. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :param noise: if specified, the split-out normal noise. :return: A noisy version of x_start. """ noise = torch.randn_like(x_start) assert noise.shape == x_start.shape coef1 = extract_and_expand(self.sqrt_alphas_cumprod, t, x_start) coef2 = extract_and_expand(self.sqrt_one_minus_alphas_cumprod, t, x_start) return coef1 * x_start + coef2 * noise def q_posterior_mean_variance(self, x_start, x_t, t): """ Compute the mean and variance of the diffusion posterior: q(x_{t-1} | x_t, x_0) """ assert x_start.shape == x_t.shape coef1 = extract_and_expand(self.posterior_mean_coef1, t, x_start) coef2 = extract_and_expand(self.posterior_mean_coef2, t, x_t) posterior_mean = coef1 * x_start + coef2 * x_t posterior_variance = extract_and_expand(self.posterior_variance, t, x_t) posterior_log_variance_clipped = extract_and_expand(self.posterior_log_variance_clipped, t, x_t) assert ( posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] == x_start.shape[0] ) return posterior_mean, posterior_variance, posterior_log_variance_clipped torch.no_grad() def p_sample_loop_compression(self, model, x_start, ref_img, record, save_root, num_opt_noises, num_random_noises, loss_type, decode_residual_gap, fname, eta, num_best_opt_noises, num_pursuit_noises, num_pursuit_coef_bits, random_opt_mse_noises): """ The function used for sampling from noise. """ assert num_best_opt_noises + num_random_noises > 0 # loss_fn_vgg = lpips.LPIPS(net='vgg').cuda() # loss_fn_alex = lpips.LPIPS(net='alex').cuda() set_seed(100000) device = x_start.device img = torch.randn(1 + random_opt_mse_noises, *x_start.shape[1:], device=device) plt.imsave(os.path.join(save_root, f"progress/img_to_compress.png"), clear_color(ref_img)) best_indices_list = [] x_hat_0_list = [] pbar = tqdm(list(range(self.num_timesteps))[::-1]) num_noises_total = 0 num_steps_total = 0 for idx in pbar: set_seed(idx) time = torch.tensor([idx] * img.shape[0], device=device) if len(x_hat_0_list) >= 2: x_hat_0_list = x_hat_0_list[-decode_residual_gap:] x_hat_0_list_tensor = torch.stack(x_hat_0_list, dim=0) # TODO: think about different probs schedulings probs = torch.linspace(0, 1, len(x_hat_0_list) - 1, device=device) probs /= torch.sum(probs) residual = torch.sum(probs.view(-1, 1) * (x_hat_0_list_tensor[1:] - x_hat_0_list_tensor[:-1]).view(len(x_hat_0_list) - 1, -1), dim=0) new_noise = torch.randn(num_opt_noises, *img.shape[1:], device=device) similarity = torch.matmul(new_noise.view(num_opt_noises, -1), residual.view(-1, 1)).squeeze(1) sorted_similarity, sorted_indices = torch.sort(similarity, descending=False) noise = new_noise[sorted_indices][:num_best_opt_noises] if num_random_noises > 0: noise = torch.cat((noise, torch.randn(num_random_noises, *img.shape[1:], device=device)), dim=0) else: noise = torch.randn(num_best_opt_noises + num_random_noises, *img.shape[1:], device=device) num_noises_total += noise.shape[0] num_steps_total += 1 # perceptual_loss_weight = (1 - (idx / len(pbar))) * lpips_loss_mult out = self.p_sample(x=img, t=time, model=model, noise=noise, ref=ref_img, loss_type=loss_type, random_opt_mse_noises=random_opt_mse_noises, eta=eta, num_pursuit_noises=num_pursuit_noises, num_pursuit_coef_bits=num_pursuit_coef_bits) best_idx = out['best_idx'] best_indices_list.append(best_idx.cpu().numpy()) # print(best_indices_list, '\n\n', flush=True) img = out['sample'] x_0_hat = out['pred_xstart'] x_hat_0_list.append(x_0_hat[0].unsqueeze(0)) # chosen_noises_list.append(noise[best_idx]) # pbar.set_postfix({'distance': out['mse']}, refresh=False) if record: if idx % 50 == 0: plt.imsave(os.path.join(save_root, f"progress/x_0_hat_{str(idx).zfill(4)}.png"), clear_color(x_0_hat[0].unsqueeze(0).clip(-1, 1))) plt.imsave(os.path.join(save_root, f"progress/x_t_{str(idx).zfill(4)}.png"), clear_color(img[0].unsqueeze(0).clip(-1, 1))) plt.imsave(os.path.join(save_root, f"progress/noise_t_{str(idx).zfill(4)}.png"), clear_color(noise[0].unsqueeze(0).clip(-1, 1))) plt.imsave(os.path.join(save_root, f"progress/err_t_{str(idx).zfill(4)}.png"), clear_color((ref_img - x_0_hat)[0].unsqueeze(0))) del noise # lpips_vgg = loss_fn_vgg(img, ref_img).squeeze().item() # lpips_alex = loss_fn_alex(img, ref_img).squeeze().item() plt.imsave(os.path.join(save_root, f"progress/x_0_hat_final_psnr={compute_psnr(img[0].unsqueeze(0), ref_img)}_bpp={np.log2(num_noises_total / num_steps_total)}.png"), clear_color(img[0].unsqueeze(0))) indices_save_folder = os.path.join(save_root, 'best_indices') os.makedirs(indices_save_folder, exist_ok=True) np.save(os.path.join(indices_save_folder, os.path.splitext(os.path.basename(fname))[0] + '.bestindices'), np.array(best_indices_list)) return img @torch.no_grad() def p_sample_loop_blind_restoration(self, model, x_start, mmse_img, num_opt_noises, iqa_metric, iqa_coef, eta, loaded_indices): assert iqa_metric == 'niqe' or iqa_metric == 'clipiqa+' or iqa_metric == 'topiq_nr-face' iqa = pyiqa.create_metric(iqa_metric, device=x_start.device) device = x_start.device set_seed(100000) img = torch.randn(2, *x_start.shape[1:], device=device) pbar = tqdm(list(range(self.num_timesteps))[::-1]) next_idx = np.array([0, 1]) if loaded_indices is not None: indices = loaded_indices loaded_indices = torch.cat((loaded_indices, torch.tensor([0], device=device, dtype=loaded_indices.dtype)), dim=0) else: indices = [] for i, idx in enumerate(pbar): set_seed(idx) noise = torch.randn(num_opt_noises, *img.shape[1:], device=device) if loaded_indices is None: time = torch.tensor([idx] * img.shape[0], device=device) out = self.p_sample(x=img, t=time, model=model, noise=noise, ref=mmse_img, loss_type='dot_prod', optimize_iqa=True, eta=eta, iqa=iqa, iqa_coef=iqa_coef) img = out['sample'] best_perceptual_idx_cur = out['best_perceptual_idx'] indices.append(next_idx[best_perceptual_idx_cur]) next_idx = out['best_idx'] else: time = torch.tensor([idx], device=device) if i == 0: img = img[loaded_indices[0]].unsqueeze(0) out = self.p_sample(x=img, t=time, model=model, noise=noise[loaded_indices[i+1]].unsqueeze(0), ref=img, loss_type='dot_prod', optimize_iqa=False, eta=eta, iqa='niqe', iqa_coef=0.0) img = out['sample'] if type(indices) is list: indices = torch.tensor(indices).flatten() return img[0].unsqueeze(0), indices @torch.no_grad() def p_sample_loop_linear_restoration(self, model, x_start, ref_img, linear_operator, y_n, num_pursuit_noises, num_pursuit_coef_bits, record, save_root, num_opt_noises, fname, eta): """ The function used for sampling from noise. """ set_seed(100000) device = x_start.device img = torch.randn(1, *x_start.shape[1:], device=device) pbar = tqdm(list(range(self.num_timesteps))[::-1]) for idx in pbar: set_seed(idx) time = torch.tensor([idx] * img.shape[0], device=device) noise = torch.randn(num_opt_noises, *img.shape[1:], device=device) # perceptual_loss_weight = (1 - (idx / len(pbar))) * lpips_loss_mult out = self.p_sample(x=img, t=time, model=model, noise=noise, ref=ref_img, loss_type='mse', eta=eta, y_n=y_n, linear_operator=linear_operator, num_pursuit_noises=num_pursuit_noises, num_pursuit_coef_bits=num_pursuit_coef_bits, optimize_iqa=False, iqa=None, iqa_coef=None) x_0_hat = out['pred_xstart'] img = out['sample'] # loss = (((x_0_hat - mmse_img) ** 2).mean() # - perceptual_quality_coef * clip_iqa((x_0_hat * 0.5 + 0.5).clip(0, 1))) # pbar.set_postfix({'perceptual_quality': loss[best_perceptual_idx].item()}, refresh=False) if record: if idx % 50 == 0: plt.imsave(os.path.join(save_root, f"progress/x_0_hat_{str(idx).zfill(4)}.png"), clear_color(x_0_hat[0].unsqueeze(0).clip(-1, 1))) plt.imsave(os.path.join(save_root, f"progress/x_t_{str(idx).zfill(4)}.png"), clear_color(img[0].unsqueeze(0).clip(-1, 1))) # plt.imsave(os.path.join(save_root, # f"progress/x_0_hat_final_lpips-vgg={lpips_vgg:.4f}_lpips-alex" # f"={lpips_alex:.4f}_psnr={compute_psnr(img[0].unsqueeze(0), ref_img)}_bpp={np.log2(num_noises_total / num_steps_total)}.png"), # clear_color(img[0].unsqueeze(0))) # indices_save_folder = os.path.join(save_root, 'best_indices') # os.makedirs(indices_save_folder, exist_ok=True) # np.save(os.path.join(indices_save_folder, os.path.splitext(os.path.basename(fname))[0] + '.bestindices'), np.array(best_indices_list)) return img def p_sample(self, model, x, t, noise, ref, loss_type, eta=None): raise NotImplementedError def p_mean_variance(self, model, x, t): model_output = model(x, self._scale_timesteps(t)) # In the case of "learned" variance, model will give twice channels. if model_output.shape[1] == 2 * x.shape[1]: model_output, model_var_values = torch.split(model_output, x.shape[1], dim=1) else: # The name of variable is wrong. # This will just provide shape information, and # will not be used for calculating something important in variance. model_var_values = model_output model_mean, pred_xstart = self.mean_processor.get_mean_and_xstart(x, t, model_output) model_variance, model_log_variance = self.var_processor.get_variance(model_var_values, t) assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape return {'mean': model_mean, 'variance': model_variance, 'log_variance': model_log_variance, 'pred_xstart': pred_xstart} def _scale_timesteps(self, t): if self.rescale_timesteps: return t.float() * (1000.0 / self.num_timesteps) return t def space_timesteps(num_timesteps, section_counts): """ Create a list of timesteps to use from an original diffusion process, given the number of timesteps we want to take from equally-sized portions of the original process. For example, if there's 300 timesteps and the section counts are [10,15,20] then the first 100 timesteps are strided to be 10 timesteps, the second 100 are strided to be 15 timesteps, and the final 100 are strided to be 20. If the stride is a string starting with "ddim", then the fixed striding from the DDIM paper is used, and only one section is allowed. :param num_timesteps: the number of diffusion steps in the original process to divide up. :param section_counts: either a list of numbers, or a string containing comma-separated numbers, indicating the step count per section. As a special case, use "ddimN" where N is a number of steps to use the striding from the DDIM paper. :return: a set of diffusion steps from the original process to use. """ if isinstance(section_counts, str): if section_counts.startswith("ddim"): desired_count = int(section_counts[len("ddim") :]) for i in range(1, num_timesteps): if len(range(0, num_timesteps, i)) == desired_count: return set(range(0, num_timesteps, i)) raise ValueError( f"cannot create exactly {num_timesteps} steps with an integer stride" ) section_counts = [int(x) for x in section_counts.split(",")] elif isinstance(section_counts, int): section_counts = [section_counts] size_per = num_timesteps // len(section_counts) extra = num_timesteps % len(section_counts) start_idx = 0 all_steps = [] for i, section_count in enumerate(section_counts): size = size_per + (1 if i < extra else 0) if size < section_count: raise ValueError( f"cannot divide section of {size} steps into {section_count}" ) if section_count <= 1: frac_stride = 1 else: frac_stride = (size - 1) / (section_count - 1) cur_idx = 0.0 taken_steps = [] for _ in range(section_count): taken_steps.append(start_idx + round(cur_idx)) cur_idx += frac_stride all_steps += taken_steps start_idx += size return set(all_steps) class SpacedDiffusion(GaussianDiffusion): """ A diffusion process which can skip steps in a base diffusion process. :param use_timesteps: a collection (sequence or set) of timesteps from the original diffusion process to retain. :param kwargs: the kwargs to create the base diffusion process. """ def __init__(self, use_timesteps, **kwargs): self.use_timesteps = set(use_timesteps) self.timestep_map = [] self.original_num_steps = len(kwargs["betas"]) base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa last_alpha_cumprod = 1.0 new_betas = [] for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): if i in self.use_timesteps: new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) last_alpha_cumprod = alpha_cumprod self.timestep_map.append(i) kwargs["betas"] = np.array(new_betas) super().__init__(**kwargs) def p_mean_variance( self, model, *args, **kwargs ): # pylint: disable=signature-differs return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) def training_losses( self, model, *args, **kwargs ): # pylint: disable=signature-differs return super().training_losses(self._wrap_model(model), *args, **kwargs) def condition_mean(self, cond_fn, *args, **kwargs): return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) def condition_score(self, cond_fn, *args, **kwargs): return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) def _wrap_model(self, model): if isinstance(model, _WrappedModel): return model return _WrappedModel( model, self.timestep_map, self.rescale_timesteps, self.original_num_steps ) def _scale_timesteps(self, t): # Scaling is done by the wrapped model. return t class _WrappedModel: def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): self.model = model self.timestep_map = timestep_map self.rescale_timesteps = rescale_timesteps self.original_num_steps = original_num_steps def __call__(self, x, ts, **kwargs): map_tensor = torch.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) new_ts = map_tensor[ts] if self.rescale_timesteps: new_ts = new_ts.float() * (1000.0 / self.original_num_steps) return self.model(x, new_ts, **kwargs) @register_sampler(name='ddpm') class DDPM(SpacedDiffusion): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def p_sample(self, model, x, t, noise, ref, perceptual_loss_weight, loss_type='mse', eta=None): out = self.p_mean_variance(model, x, t) pred_xstart = out['pred_xstart'] # if loss_type == 'mse': # loss = - ((pred_xstart + noise - ref).view(noise.shape[0], -1) ** 2).mean(1) # elif loss_type == 'mse_alpha': # loss = - ((pred_xstart + torch.exp(0.5 * out['log_variance']) * noise - ref).view(noise.shape[0], -1) ** 2).mean(1) if loss_type == 'dot_prod': loss = torch.matmul(noise.view(noise.shape[0], -1), (ref - pred_xstart).view(pred_xstart.shape[0], -1).transpose(0, 1)) elif loss_type == 'mse': #TODO: this is what we are doing! the dot product is an approximation of it! sqrt_recip_alphas_cumprod = extract_and_expand(self.sqrt_recip_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), noise) loss = - ((pred_xstart + sqrt_recip_alphas_cumprod * torch.exp(0.5 * out['log_variance']) * noise - ref).view(noise.shape[0], -1) ** 2).mean(1) elif loss_type == 'l1': sqrt_recip_alphas_cumprod = extract_and_expand(self.sqrt_recip_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), noise) loss = - torch.abs(pred_xstart + sqrt_recip_alphas_cumprod * torch.exp(0.5 * out['log_variance']) * noise - ref).view(noise.shape[0], -1).mean(1) # elif loss_type == 'ddpm_inversion': # sqrt_alphas_cumprod = extract_and_expand(self.sqrt_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), ref) # sqrt_one_minus_alphas_cumprod = extract_and_expand(self.sqrt_one_minus_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), ref) # # forward_noise = torch.randn_like(ref) # loss = torch.matmul(noise.view(noise.shape[0], -1), # (sqrt_alphas_cumprod * ref + sqrt_one_minus_alphas_cumprod * forward_noise - out['mean']).view(pred_xstart.shape[0], -1).transpose(0, 1)) # # else: raise NotImplementedError() best_idx = torch.argmax(loss) samples = out['mean'] + torch.exp(0.5 * out['log_variance']) * noise[best_idx].unsqueeze(0) return {'sample': samples if t[0] > 0 else pred_xstart, 'pred_xstart': pred_xstart, 'mse': loss[best_idx].item(), 'best_idx': best_idx} @register_sampler(name='ddim') class DDIM(SpacedDiffusion): @torch.no_grad() def p_sample(self, model, x, t, noise, ref, loss_type='mse', eta=0.0, iqa=None, iqa_coef=1.0, optimize_iqa=False, linear_operator=None, y_n=None, random_opt_mse_noises=0, num_pursuit_noises=1, num_pursuit_coef_bits=1, cond_fn=None, cls=None ): out = self.p_mean_variance(model, x, t) pred_xstart = out['pred_xstart'] best_perceptual_idx = None if optimize_iqa: assert not random_opt_mse_noises coef_sign = 1 if iqa.lower_better else -1 if iqa.metric_name == 'topiq_nr-face': assert not iqa.lower_better # topiq_nr-face doesn't support a batch size larger than 1. scores = [] for elem in pred_xstart: try: scores.append(iqa((elem.unsqueeze(0) * 0.5 + 0.5).clip(0, 1)).squeeze().view(1)) except AssertionError: # no face detected... scores.append(torch.zeros(1, device=x.device)) scores = torch.stack(scores, dim=0).squeeze() loss = (((ref - pred_xstart) ** 2).view(pred_xstart.shape[0], -1).mean(1) + coef_sign * iqa_coef * scores) else: loss = (((ref - pred_xstart) ** 2).view(pred_xstart.shape[0], -1).mean(1) + coef_sign * iqa_coef * iqa((pred_xstart * 0.5 + 0.5).clip(0, 1)).squeeze()) best_perceptual_idx = torch.argmin(loss) out['pred_xstart'] = out['pred_xstart'][best_perceptual_idx].unsqueeze(0) pred_xstart = pred_xstart[best_perceptual_idx].unsqueeze(0) t = t[best_perceptual_idx] x = x[best_perceptual_idx].unsqueeze(0) elif random_opt_mse_noises > 0: loss = (((ref - pred_xstart) ** 2).view(pred_xstart.shape[0], -1).mean(1)) best_mse_idx = torch.argmin(loss) out['pred_xstart'] = out['pred_xstart'][best_mse_idx].unsqueeze(0) pred_xstart = pred_xstart[best_mse_idx].unsqueeze(0) t = t[best_mse_idx] x = x[best_mse_idx].unsqueeze(0) eps = self.predict_eps_from_x_start(x, t, out['pred_xstart']) alpha_bar = extract_and_expand(self.alphas_cumprod, t, x) alpha_bar_prev = extract_and_expand(self.alphas_cumprod_prev, t, x) sigma = ( eta * torch.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * torch.sqrt(1 - alpha_bar / alpha_bar_prev) ) mean_pred = ( out["pred_xstart"] * torch.sqrt(alpha_bar_prev) + torch.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps ) sample = mean_pred if y_n is not None: assert linear_operator is not None y_n = ref if y_n is None else y_n if not optimize_iqa and random_opt_mse_noises <= 0 and cond_fn is None: if loss_type == 'dot_prod': if linear_operator is None: compute_loss = lambda noise_cur: torch.matmul(noise_cur.view(noise_cur.shape[0], -1), (ref - pred_xstart).view(pred_xstart.shape[0], -1).transpose(0, 1)) else: compute_loss = lambda noise_cur: torch.matmul(linear_operator.forward(noise_cur).reshape(noise_cur.shape[0], -1), (y_n - linear_operator.forward(pred_xstart)).reshape(pred_xstart.shape[0], -1).transpose(0, 1)) elif loss_type == 'mse': if linear_operator is None: compute_loss = lambda noise_cur: - (((sigma / torch.sqrt(alpha_bar_prev)) * noise_cur + pred_xstart - y_n) ** 2).mean((1, 2, 3)) else: compute_loss = lambda noise_cur: - (((sigma / torch.sqrt(alpha_bar_prev))[:, :, :y_n.shape[2], :y_n.shape[3]] * linear_operator.forward(noise_cur) + linear_operator.forward(pred_xstart) - y_n) ** 2).mean((1, 2, 3)) else: raise NotImplementedError() # print("getting loss") loss = compute_loss(noise) best_idx = torch.argmax(loss) best_noise = noise[best_idx] best_loss = loss[best_idx] if num_pursuit_noises > 1: pursuit_coefs = np.linspace(0, 1, 2 ** num_pursuit_coef_bits + 1)[1:] for _ in range(num_pursuit_noises - 1): next_best_noise = best_noise for pursuit_coef in pursuit_coefs: new_noise = best_noise.unsqueeze(0) * np.sqrt(pursuit_coef) + noise * np.sqrt(1 - pursuit_coef) new_noise /= new_noise.view(noise.shape[0], -1).std(1).view(noise.shape[0], 1, 1, 1) cur_loss = compute_loss(new_noise) cur_best_idx = torch.argmax(cur_loss) cur_best_loss = cur_loss[cur_best_idx] if cur_best_loss > best_loss: next_best_noise = new_noise[cur_best_idx] best_loss = cur_best_loss best_noise = next_best_noise if t != 0: sample += sigma * best_noise.unsqueeze(0) return {'sample': sample if t[0] > 0 else pred_xstart, 'pred_xstart': pred_xstart, 'mse': loss[best_idx].item(), 'best_idx': best_idx} else: if random_opt_mse_noises > 0 and not optimize_iqa: num_rand_indices = random_opt_mse_noises elif optimize_iqa and random_opt_mse_noises <= 0: num_rand_indices = 1 elif cond_fn is not None: num_rand_indices = 2 else: raise NotImplementedError() loss = torch.matmul(noise.view(noise.shape[0], -1), (ref - pred_xstart).view(pred_xstart.shape[0], -1).transpose(0, 1)).squeeze() best_idx = torch.argmax(loss).reshape(1) rand_idx = torch.randint(0, noise.shape[0], size=(num_rand_indices, ), device=best_idx.device).reshape(num_rand_indices) best_and_rand_idx = torch.cat((best_idx, rand_idx), dim=0).flatten() if t != 0: sample = sample + sigma * noise[best_and_rand_idx] return {'sample': sample, 'pred_xstart': pred_xstart, 'best_idx': best_and_rand_idx, 'best_perceptual_idx': best_perceptual_idx} def predict_eps_from_x_start(self, x_t, t, pred_xstart): coef1 = extract_and_expand(self.sqrt_recip_alphas_cumprod, t, x_t) coef2 = extract_and_expand(self.sqrt_recipm1_alphas_cumprod, t, x_t) return (coef1 * x_t - pred_xstart) / coef2 # ================= # Helper functions # ================= def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): """ Get a pre-defined beta schedule for the given name. The beta schedule library consists of beta schedules which remain similar in the limit of num_diffusion_timesteps. Beta schedules may be added, but should not be removed or changed once they are committed to maintain backwards compatibility. """ if schedule_name == "linear": # Linear schedule from Ho et al, extended to work for any number of # diffusion steps. scale = 1000 / num_diffusion_timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 return np.linspace( beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 ) elif schedule_name == "cosine": return betas_for_alpha_bar( num_diffusion_timesteps, lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, ) else: raise NotImplementedError(f"unknown beta schedule: {schedule_name}") def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t from 0 to 1 and produces the cumulative product of (1-beta) up to that part of the diffusion process. :param max_beta: the maximum beta to use; use values lower than 1 to prevent singularities. """ betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return np.array(betas) # ================ # Helper function # ================ def extract_and_expand(array, time, target): array = torch.from_numpy(array).to(target.device)[time].float() while array.ndim < target.ndim: array = array.unsqueeze(-1) return array.expand_as(target) def expand_as(array, target): if isinstance(array, np.ndarray): array = torch.from_numpy(array) elif isinstance(array, np.float): array = torch.tensor([array]) while array.ndim < target.ndim: array = array.unsqueeze(-1) return array.expand_as(target).to(target.device) def _extract_into_tensor(arr, timesteps, broadcast_shape): """ Extract values from a 1-D numpy array for a batch of indices. :param arr: the 1-D numpy array. :param timesteps: a tensor of indices into the array to extract. :param broadcast_shape: a larger shape of K dimensions with the batch dimension equal to the length of timesteps. :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float() while len(res.shape) < len(broadcast_shape): res = res[..., None] return res.expand(broadcast_shape)