File size: 13,846 Bytes
b273838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import numpy as np
import torch
import scipy
import torch.nn.functional as F
from torch import nn
from torch.autograd import Variable
from PIL import Image
import matplotlib.pyplot as plt

"""
Helper functions for new types of inverse problems
"""


def fft2(x):
    """ FFT with shifting DC to the center of the image"""
    return torch.fft.fftshift(torch.fft.fft2(x), dim=[-1, -2])


def ifft2(x):
    """ IFFT with shifting DC to the corner of the image prior to transform"""
    return torch.fft.ifft2(torch.fft.ifftshift(x, dim=[-1, -2]))


def fft2_m(x):
    """ FFT for multi-coil """
    if not torch.is_complex(x):
        x = x.type(torch.complex64)
    return torch.view_as_complex(fft2c_new(torch.view_as_real(x)))


def ifft2_m(x):
    """ IFFT for multi-coil """
    if not torch.is_complex(x):
        x = x.type(torch.complex64)
    return torch.view_as_complex(ifft2c_new(torch.view_as_real(x)))


def clear(x):
    x = x.detach().cpu().squeeze().numpy()
    return normalize_np(x)


def resize_and_crop(image, imsize=512):
    width, height = image.size

    if width < height:
        new_width = imsize
        new_height = int((imsize / width) * height)
    else:
        new_height = imsize
        new_width = int((imsize / height) * width)

    image_resized = image.resize((new_width, new_height))

    left = (new_width - imsize) / 2
    top = (new_height - imsize) / 2
    right = (new_width + imsize) / 2
    bottom = (new_height + imsize) / 2

    image_cropped = image_resized.crop((left, top, right, bottom))

    return image_cropped


def clear_color(x, normalize=True):
    if torch.is_complex(x):
        x = torch.abs(x)
    if normalize:
        x = x.detach().cpu().squeeze().numpy()
        if x.ndim == 3:
            return normalize_np(np.transpose(x, (1, 2, 0)))
        else:
            return normalize_np(x)
    else:
        x = (x / 2 + 0.5).clamp(0, 1)
        x = x.detach().cpu().squeeze().numpy()
        if x.ndim == 3:
            return np.transpose(x, (1, 2, 0))
        else:
            return x


def normalize_np(img):
    """ Normalize img in arbitrary range to [0, 1] """
    img -= np.min(img)
    img /= np.max(img)
    return img


def prepare_im(load_dir, image_size, device):
    ref_img = torch.from_numpy(normalize_np(plt.imread(load_dir)[:, :, :3].astype(np.float32))).to(device)
    ref_img = ref_img.permute(2, 0, 1)
    ref_img = ref_img.view(1, 3, image_size, image_size)
    ref_img = ref_img * 2 - 1
    return ref_img


def fold_unfold(img_t, kernel, stride):
    img_shape = img_t.shape
    B, C, H, W = img_shape
    print("\n----- input shape: ", img_shape)

    patches = img_t.unfold(3, kernel, stride).unfold(2, kernel, stride).permute(0, 1, 2, 3, 5, 4)

    print("\n----- patches shape:", patches.shape)
    # reshape output to match F.fold input
    patches = patches.contiguous().view(B, C, -1, kernel * kernel)
    print("\n", patches.shape)  # [B, C, nb_patches_all, kernel_size*kernel_size]
    patches = patches.permute(0, 1, 3, 2)
    print("\n", patches.shape)  # [B, C, kernel_size*kernel_size, nb_patches_all]
    patches = patches.contiguous().view(B, C * kernel * kernel, -1)
    print("\n", patches.shape)  # [B, C*prod(kernel_size), L] as expected by Fold

    output = F.fold(patches, output_size=(H, W),
                    kernel_size=kernel, stride=stride)
    # mask that mimics the original folding:
    recovery_mask = F.fold(torch.ones_like(patches), output_size=(
        H, W), kernel_size=kernel, stride=stride)
    output = output / recovery_mask

    return patches, output


def reshape_patch(x, crop_size=128, dim_size=3):
    x = x.transpose(0, 2).squeeze()  # [9, 3*(128**2)]
    x = x.view(dim_size ** 2, 3, crop_size, crop_size)
    return x


def reshape_patch_back(x, crop_size=128, dim_size=3):
    x = x.view(dim_size ** 2, 3 * (crop_size ** 2)).unsqueeze(dim=-1)
    x = x.transpose(0, 2)
    return x


class Unfolder:
    def __init__(self, img_size=256, crop_size=128, stride=64):
        self.img_size = img_size
        self.crop_size = crop_size
        self.stride = stride

        self.unfold = nn.Unfold(crop_size, stride=stride)
        self.dim_size = (img_size - crop_size) // stride + 1

    def __call__(self, x):
        patch1D = self.unfold(x)
        patch2D = reshape_patch(patch1D, crop_size=self.crop_size, dim_size=self.dim_size)
        return patch2D


def center_crop(img, new_width=None, new_height=None):
    width = img.shape[1]
    height = img.shape[0]

    if new_width is None:
        new_width = min(width, height)

    if new_height is None:
        new_height = min(width, height)

    left = int(np.ceil((width - new_width) / 2))
    right = width - int(np.floor((width - new_width) / 2))

    top = int(np.ceil((height - new_height) / 2))
    bottom = height - int(np.floor((height - new_height) / 2))

    if len(img.shape) == 2:
        center_cropped_img = img[top:bottom, left:right]
    else:
        center_cropped_img = img[top:bottom, left:right, ...]

    return center_cropped_img


class Folder:
    def __init__(self, img_size=256, crop_size=128, stride=64):
        self.img_size = img_size
        self.crop_size = crop_size
        self.stride = stride

        self.fold = nn.Fold(img_size, crop_size, stride=stride)
        self.dim_size = (img_size - crop_size) // stride + 1

    def __call__(self, patch2D):
        patch1D = reshape_patch_back(patch2D, crop_size=self.crop_size, dim_size=self.dim_size)
        return self.fold(patch1D)


def random_sq_bbox(img, mask_shape, image_size=256, margin=(16, 16)):
    """Generate a random sqaure mask for inpainting
    """
    B, C, H, W = img.shape
    h, w = mask_shape
    margin_height, margin_width = margin
    maxt = image_size - margin_height - h
    maxl = image_size - margin_width - w

    # bb
    t = np.random.randint(margin_height, maxt)
    l = np.random.randint(margin_width, maxl)

    # make mask
    mask = torch.ones([B, C, H, W], device=img.device)
    mask[..., t:t + h, l:l + w] = 0

    return mask, t, t + h, l, l + w


class mask_generator:
    def __init__(self, mask_type, mask_len_range=None, mask_prob_range=None,
                 image_size=256, margin=(16, 16)):
        """
        (mask_len_range): given in (min, max) tuple.
        Specifies the range of box size in each dimension
        (mask_prob_range): for the case of random masking,
        specify the probability of individual pixels being masked
        """
        assert mask_type in ['box', 'random', 'both', 'extreme']
        self.mask_type = mask_type
        self.mask_len_range = mask_len_range
        self.mask_prob_range = mask_prob_range
        self.image_size = image_size
        self.margin = margin

    def _retrieve_box(self, img):
        l, h = self.mask_len_range
        l, h = int(l), int(h)
        mask_h = np.random.randint(l, h)
        mask_w = np.random.randint(l, h)
        mask, t, tl, w, wh = random_sq_bbox(img,
                                            mask_shape=(mask_h, mask_w),
                                            image_size=self.image_size,
                                            margin=self.margin)
        return mask, t, tl, w, wh

    def _retrieve_random(self, img):
        total = self.image_size ** 2
        # random pixel sampling
        l, h = self.mask_prob_range
        prob = np.random.uniform(l, h)
        mask_vec = torch.ones([1, self.image_size * self.image_size])
        samples = np.random.choice(self.image_size * self.image_size, int(total * prob), replace=False)
        mask_vec[:, samples] = 0
        mask_b = mask_vec.view(1, self.image_size, self.image_size)
        mask_b = mask_b.repeat(3, 1, 1)
        mask = torch.ones_like(img, device=img.device)
        mask[:, ...] = mask_b
        return mask

    def __call__(self, img):
        if self.mask_type == 'random':
            mask = self._retrieve_random(img)
            return mask
        elif self.mask_type == 'box':
            mask, t, th, w, wl = self._retrieve_box(img)
            return mask
        elif self.mask_type == 'extreme':
            mask, t, th, w, wl = self._retrieve_box(img)
            mask = 1. - mask
            return mask


def unnormalize(img, s=0.95):
    scaling = torch.quantile(img.abs(), s)
    return img / scaling


def normalize(img, s=0.95):
    scaling = torch.quantile(img.abs(), s)
    return img * scaling


def dynamic_thresholding(img, s=0.95):
    img = normalize(img, s=s)
    return torch.clip(img, -1., 1.)


def get_gaussian_kernel(kernel_size=31, std=0.5):
    n = np.zeros([kernel_size, kernel_size])
    n[kernel_size // 2, kernel_size // 2] = 1
    k = scipy.ndimage.gaussian_filter(n, sigma=std)
    k = k.astype(np.float32)
    return k


def init_kernel_torch(kernel, device="cuda:0"):
    h, w = kernel.shape
    kernel = Variable(torch.from_numpy(kernel).to(device), requires_grad=True)
    kernel = kernel.view(1, 1, h, w)
    kernel = kernel.repeat(1, 3, 1, 1)
    return kernel


class Blurkernel(nn.Module):
    def __init__(self, blur_type='gaussian', kernel_size=31, std=3.0, device=None):
        super().__init__()
        self.blur_type = blur_type
        self.kernel_size = kernel_size
        self.std = std
        self.device = device
        self.seq = nn.Sequential(
            nn.ReflectionPad2d(self.kernel_size // 2),
            nn.Conv2d(3, 3, self.kernel_size, stride=1, padding=0, bias=False, groups=3)
        )

        self.weights_init()

    def forward(self, x):
        return self.seq(x)

    def weights_init(self):
        if self.blur_type == "gaussian":
            n = np.zeros((self.kernel_size, self.kernel_size))
            n[self.kernel_size // 2, self.kernel_size // 2] = 1
            k = scipy.ndimage.gaussian_filter(n, sigma=self.std)
            k = torch.from_numpy(k)
            self.k = k
            for name, f in self.named_parameters():
                f.data.copy_(k)
        elif self.blur_type == "motion":
            k = Kernel(size=(self.kernel_size, self.kernel_size), intensity=self.std).kernelMatrix
            k = torch.from_numpy(k)
            self.k = k
            for name, f in self.named_parameters():
                f.data.copy_(k)

    def update_weights(self, k):
        if not torch.is_tensor(k):
            k = torch.from_numpy(k).to(self.device)
        for name, f in self.named_parameters():
            f.data.copy_(k)

    def get_kernel(self):
        return self.k


class exact_posterior():
    def __init__(self, betas, sigma_0, label_dim, input_dim):
        self.betas = betas
        self.sigma_0 = sigma_0
        self.label_dim = label_dim
        self.input_dim = input_dim

    def py_given_x0(self, x0, y, A, verbose=False):
        norm_const = 1 / ((2 * np.pi) ** self.input_dim * self.sigma_0 ** 2)
        exp_in = -1 / (2 * self.sigma_0 ** 2) * torch.linalg.norm(y - A(x0)) ** 2
        if not verbose:
            return norm_const * torch.exp(exp_in)
        else:
            return norm_const * torch.exp(exp_in), norm_const, exp_in

    def pxt_given_x0(self, x0, xt, t, verbose=False):
        beta_t = self.betas[t]
        norm_const = 1 / ((2 * np.pi) ** self.label_dim * beta_t)
        exp_in = -1 / (2 * beta_t) * torch.linalg.norm(xt - np.sqrt(1 - beta_t) * x0) ** 2
        if not verbose:
            return norm_const * torch.exp(exp_in)
        else:
            return norm_const * torch.exp(exp_in), norm_const, exp_in

    def prod_logsumexp(self, x0, xt, y, A, t):
        py_given_x0_density, pyx0_nc, pyx0_ei = self.py_given_x0(x0, y, A, verbose=True)
        pxt_given_x0_density, pxtx0_nc, pxtx0_ei = self.pxt_given_x0(x0, xt, t, verbose=True)
        summand = (pyx0_nc * pxtx0_nc) * torch.exp(-pxtx0_ei - pxtx0_ei)
        return torch.logsumexp(summand, dim=0)


def map2tensor(gray_map):
    """Move gray maps to GPU, no normalization is done"""
    return torch.FloatTensor(gray_map).unsqueeze(0).unsqueeze(0).cuda()


def create_penalty_mask(k_size, penalty_scale):
    """Generate a mask of weights penalizing values close to the boundaries"""
    center_size = k_size // 2 + k_size % 2
    mask = create_gaussian(size=k_size, sigma1=k_size, is_tensor=False)
    mask = 1 - mask / np.max(mask)
    margin = (k_size - center_size) // 2 - 1
    mask[margin:-margin, margin:-margin] = 0
    return penalty_scale * mask


def create_gaussian(size, sigma1, sigma2=-1, is_tensor=False):
    """Return a Gaussian"""
    func1 = [np.exp(-z ** 2 / (2 * sigma1 ** 2)) / np.sqrt(2 * np.pi * sigma1 ** 2) for z in
             range(-size // 2 + 1, size // 2 + 1)]
    func2 = func1 if sigma2 == -1 else [np.exp(-z ** 2 / (2 * sigma2 ** 2)) / np.sqrt(2 * np.pi * sigma2 ** 2) for z in
                                        range(-size // 2 + 1, size // 2 + 1)]
    return torch.FloatTensor(np.outer(func1, func2)).cuda() if is_tensor else np.outer(func1, func2)


def total_variation_loss(img, weight):
    tv_h = ((img[:, :, 1:, :] - img[:, :, :-1, :]).pow(2)).mean()
    tv_w = ((img[:, :, :, 1:] - img[:, :, :, :-1]).pow(2)).mean()
    return weight * (tv_h + tv_w)


if __name__ == '__main__':
    import numpy as np
    from torch import nn
    import matplotlib.pyplot as plt

    device = 'cuda:0'
    load_path = '/media/harry/tomo/FFHQ/256/test/00000.png'
    img = torch.tensor(plt.imread(load_path)[:, :, :3])  # rgb
    img = torch.permute(img, (2, 0, 1)).view(1, 3, 256, 256).to(device)

    mask_len_range = (32, 128)
    mask_prob_range = (0.3, 0.7)
    image_size = 256
    # mask
    mask_gen = mask_generator(
        mask_len_range=mask_len_range,
        mask_prob_range=mask_prob_range,
        image_size=image_size
    )
    mask = mask_gen(img)

    mask = np.transpose(mask.squeeze().cpu().detach().numpy(), (1, 2, 0))

    plt.imshow(mask)
    plt.show()