File size: 12,549 Bytes
b273838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import torch
from diffusers import DDIMScheduler, StableDiffusionPipeline
from typing import Optional, Tuple, Union
from transformers import Blip2Processor, Blip2ForConditionalGeneration


class PipelineWrapper(torch.nn.Module):
    def __init__(self, model_id: str,
                 timesteps: int,
                 device: torch.device,
                 float16: bool = False,
                 compile: bool = True,
                 token: Optional[str] = None, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model_id = model_id
        self.num_timesteps = timesteps
        self.device = device
        self.float16 = float16
        self.token = token
        self.compile = compile
        self.model = None

    # def get_sigma(self, timestep: int) -> float:
    #     sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / self.model.scheduler.alphas_cumprod - 1)
    #     return sqrt_recipm1_alphas_cumprod[timestep]

    @property
    def timesteps(self) -> torch.Tensor:
        return self.model.scheduler.timesteps

    @property
    def dtype(self) -> torch.dtype:
        if self.model is None:
            raise AttributeError("Model is not initialized.")
        return self.model.unet.dtype

    def get_x_0_hat(self, xt: torch.Tensor, epst: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
        return self.model.scheduler.get_x_0_hat(xt, epst, timestep)

    def finish_step(self, xt: torch.Tensor, pred_x0: torch.Tensor, epst: torch.Tensor,
                    timestep: torch.Tensor, variance_noise: torch.Tensor,
                    **kwargs) -> torch.Tensor:
        return self.model.scheduler.finish_step(xt, pred_x0, epst, timestep, variance_noise, **kwargs)

    def get_variance(self, timestep: torch.Tensor) -> torch.Tensor:
        return self.model.scheduler.get_variance(timestep)

    def set_timesteps(self, timesteps: int, device: torch.device) -> None:
        self.model.scheduler.set_timesteps(timesteps, device=device)

    def encode_image(self, x: torch.Tensor) -> torch.Tensor:
        pass

    def decode_image(self, x: torch.Tensor) -> torch.Tensor:
        pass

    def encode_prompt(self, prompt: torch.Tensor, negative_prompt=None) -> Tuple[torch.Tensor, torch.Tensor]:
        pass

    def get_epst(self, xt: torch.Tensor, t: torch.Tensor, prompt_embeds: torch.Tensor,
                 guidance_scale: Optional[float] = None, **kwargs) -> torch.Tensor:
        pass

    def get_image_size(self) -> Tuple[int, int]:
        return self.model.unet.config.sample_size * self.model.vae_scale_factor

    def get_noise_shape(self, imsize: Union[int, Tuple[int]], batch_size: int) -> Tuple[int, ...]:
        if isinstance(imsize, int):
            imsize = (imsize, imsize)
        variance_noise_shape = (batch_size,
                                self.model.unet.config.in_channels,
                                imsize[-2],
                                imsize[-1])
        return variance_noise_shape

    def get_latent_shape(self, orig_image_shape: Union[int, Tuple[int, int]]) -> Tuple[int, ...]:
        if isinstance(orig_image_shape, int):
            orig_image_shape = (orig_image_shape, orig_image_shape)
        return (self.model.unet.config.in_channels,
                orig_image_shape[0] // self.model.vae_scale_factor,
                orig_image_shape[1] // self.model.vae_scale_factor)

    def get_pre_kwargs(self, **kwargs) -> dict:
        return {}


class StableDiffWrapper(PipelineWrapper):
    def __init__(self, scheduler='ddpm', *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.scheduler_type = scheduler
        try:
            self.model = StableDiffusionPipeline.from_pretrained(
                self.model_id,
                torch_dtype=torch.float16 if self.float16 else torch.float32,
                token=self.token).to(self.device)
        except OSError:
            self.model = StableDiffusionPipeline.from_pretrained(
                self.model_id,
                torch_dtype=torch.float16 if self.float16 else torch.float32,
                token=self.token, force_download=True
                ).to(self.device)

        if scheduler == 'ddpm' or 'ddim' in scheduler:
            eta = 1.0 if 'ddpm' in scheduler else float(scheduler.split('-')[1])
            self.model.scheduler = DDIMWrapper(model_id=self.model_id, device=self.device,
                                               eta=eta,
                                               float16=self.float16, token=self.token)

        self.model.scheduler.set_timesteps(self.num_timesteps, device=self.device)
        if self.compile:
            try:
                self.model.unet = torch.compile(self.model.unet, mode="reduce-overhead", fullgraph=True)
            except Exception as e:
                print(f"Error compiling model: {e}")

    def encode_image(self, x: torch.Tensor) -> torch.Tensor:
        return (self.model.vae.encode(x).latent_dist.mode() * self.model.vae.config.scaling_factor)  # .float()

    def decode_image(self, x: torch.Tensor) -> torch.Tensor:
        if x.device != self.device:
            orig_device = self.model.vae.device
            self.model.vae.to(x.device)
            ret = self.model.vae.decode(x / self.model.vae.config.scaling_factor).sample.clamp(-1, 1)
            self.model.vae.to(orig_device)
            return ret
        return self.model.vae.decode(x / self.model.vae.config.scaling_factor).sample.clamp(-1, 1)

    def encode_prompt(self, prompt: torch.Tensor, negative_prompt=None) -> Tuple[torch.Tensor, torch.Tensor]:
        do_cfg = (negative_prompt is not None) or prompt != ""

        prompt_embeds, negative_prompt_embeds = self.model.encode_prompt(
            prompt, self.device, 1,
            do_cfg,
            negative_prompt,
        )

        if do_cfg:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
        return prompt_embeds

    def get_epst(self, xt: torch.Tensor, t: torch.Tensor, prompt_embeds: torch.Tensor,
                 guidance_scale: Optional[float] = None, return_everything=False, **kwargs):
        do_cfg = prompt_embeds.shape[0] > 1
        xt = torch.cat([xt] * 2) if do_cfg else xt

        # predict the noise residual
        noise_pred = self.model.unet(xt, t, encoder_hidden_states=prompt_embeds, return_dict=False)[0]

        # perform guidance
        if do_cfg:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            return None, noise_pred_uncond, noise_pred_text
        return None, noise_pred, None


class SchedulerWrapper(object):
    def __init__(self, model_id: str, device: torch.device,
                 float16: bool = False, token: Optional[str] = None, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model_id = model_id
        self.device = device
        self.float16 = float16
        self.token = token
        self.scheduler = None

    @property
    def timesteps(self) -> torch.Tensor:
        return self.scheduler.timesteps

    def set_timesteps(self, timesteps: int, device: torch.device) -> None:
        self.scheduler.set_timesteps(timesteps, device=device)
        if self.scheduler.timesteps[0] == 1000:
            self.scheduler.timesteps -= 1

    def get_x_0_hat(self, xt: torch.Tensor, epst: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
        pass

    def finish_step(self, xt: torch.Tensor, pred_x0: torch.Tensor, epst: torch.Tensor,
                    timestep: torch.Tensor, variance_noise: torch.Tensor,
                    **kwargs) -> torch.Tensor:
        pass

    def get_variance(self, timestep: torch.Tensor) -> torch.Tensor:
        pass


class DDIMWrapper(SchedulerWrapper):
    def __init__(self, eta, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.scheduler = DDIMScheduler.from_pretrained(
            self.model_id, subfolder="scheduler",
            torch_dtype=torch.float16 if self.float16 else torch.float32,
            token=self.token,
            device=self.device, timestep_spacing='linspace')
        self.eta = eta

    def get_x_0_hat(self, xt: torch.Tensor, epst: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
        # compute alphas, betas
        alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
        beta_prod_t = 1 - alpha_prod_t
        # compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        if self.scheduler.config.prediction_type == 'epsilon':
            pred_original_sample = (xt - beta_prod_t ** (0.5) * epst) / alpha_prod_t ** (0.5)
        elif self.scheduler.config.prediction_type == 'v_prediction':
            pred_original_sample = (alpha_prod_t ** 0.5) * xt - (beta_prod_t ** 0.5) * epst

        return pred_original_sample

    def finish_step(self, xt: torch.Tensor, pred_x0: torch.Tensor, epst: torch.Tensor,
                    timestep: torch.Tensor, variance_noise: torch.Tensor,
                    eta=None) -> torch.Tensor:
        if eta is None:
            eta = self.eta
        prev_timestep = timestep - self.scheduler.config.num_train_timesteps // \
            self.scheduler.num_inference_steps
        # 2. compute alphas, betas
        alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
        alpha_prod_t_prev = self._get_alpha_prod_t_prev(prev_timestep)
        beta_prod_t = 1 - alpha_prod_t

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self.get_variance(timestep)
        std_dev_t = eta * variance ** (0.5)

        # std_dev_t = eta * variance ** (0.5)
        # Take care of asymetric reverse process (asyrp)
        if self.scheduler.config.prediction_type == 'epsilon':
            model_output_direction = epst
        elif self.scheduler.config.prediction_type == 'v_prediction':
            model_output_direction = (alpha_prod_t**0.5) * epst + (beta_prod_t**0.5) * xt

        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_x0 + pred_sample_direction

        # 8. Add noice if eta > 0
        if eta > 0:
            sigma_z = std_dev_t * variance_noise
            prev_sample = prev_sample + sigma_z

        return prev_sample

    def get_variance(self, timestep: torch.Tensor) -> torch.Tensor:
        prev_timestep = timestep - self.scheduler.config.num_train_timesteps // \
            self.scheduler.num_inference_steps
        variance = self.scheduler._get_variance(timestep, prev_timestep)
        return variance

    def _get_alpha_prod_t_prev(self, prev_timestep: torch.Tensor) -> torch.Tensor:
        return self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 \
            else self.scheduler.final_alpha_cumprod

def load_model(model_id: str, timesteps: int,
               device: torch.device, blip: bool = False,
               float16: bool = False, token: Optional[str] = None,
               compile: bool = True,
               blip_model="Salesforce/blip2-opt-2.7b-coco", scheduler: str = 'ddpm') -> PipelineWrapper:
    pipeline = StableDiffWrapper(model_id=model_id, timesteps=timesteps, device=device,
                                 scheduler=scheduler,
                                 float16=float16, token=token, compile=compile)

    pipeline = pipeline.to(device)
    if blip:
        pipeline.blip_processor = Blip2Processor.from_pretrained(blip_model)
        try:
            print(device if torch.cuda.get_device_properties(0).total_memory/(1024**3) > 18 else 'cpu')
            pipeline.blip_model = Blip2ForConditionalGeneration.from_pretrained(
                blip_model,).to(device if torch.cuda.get_device_properties(0).total_memory/(1024**3) > 18 else 'cpu')
        except OSError:
            pipeline.blip_model = Blip2ForConditionalGeneration.from_pretrained(
                blip_model, force_download=True).to(device if torch.cuda.get_device_properties(0).total_memory/(1024**3) > 18 else 'cpu')
        pipeline.blip_max_words = 32

    image_size = pipeline.get_image_size()
    return pipeline, image_size