Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,549 Bytes
b273838 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import torch
from diffusers import DDIMScheduler, StableDiffusionPipeline
from typing import Optional, Tuple, Union
from transformers import Blip2Processor, Blip2ForConditionalGeneration
class PipelineWrapper(torch.nn.Module):
def __init__(self, model_id: str,
timesteps: int,
device: torch.device,
float16: bool = False,
compile: bool = True,
token: Optional[str] = None, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.model_id = model_id
self.num_timesteps = timesteps
self.device = device
self.float16 = float16
self.token = token
self.compile = compile
self.model = None
# def get_sigma(self, timestep: int) -> float:
# sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / self.model.scheduler.alphas_cumprod - 1)
# return sqrt_recipm1_alphas_cumprod[timestep]
@property
def timesteps(self) -> torch.Tensor:
return self.model.scheduler.timesteps
@property
def dtype(self) -> torch.dtype:
if self.model is None:
raise AttributeError("Model is not initialized.")
return self.model.unet.dtype
def get_x_0_hat(self, xt: torch.Tensor, epst: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
return self.model.scheduler.get_x_0_hat(xt, epst, timestep)
def finish_step(self, xt: torch.Tensor, pred_x0: torch.Tensor, epst: torch.Tensor,
timestep: torch.Tensor, variance_noise: torch.Tensor,
**kwargs) -> torch.Tensor:
return self.model.scheduler.finish_step(xt, pred_x0, epst, timestep, variance_noise, **kwargs)
def get_variance(self, timestep: torch.Tensor) -> torch.Tensor:
return self.model.scheduler.get_variance(timestep)
def set_timesteps(self, timesteps: int, device: torch.device) -> None:
self.model.scheduler.set_timesteps(timesteps, device=device)
def encode_image(self, x: torch.Tensor) -> torch.Tensor:
pass
def decode_image(self, x: torch.Tensor) -> torch.Tensor:
pass
def encode_prompt(self, prompt: torch.Tensor, negative_prompt=None) -> Tuple[torch.Tensor, torch.Tensor]:
pass
def get_epst(self, xt: torch.Tensor, t: torch.Tensor, prompt_embeds: torch.Tensor,
guidance_scale: Optional[float] = None, **kwargs) -> torch.Tensor:
pass
def get_image_size(self) -> Tuple[int, int]:
return self.model.unet.config.sample_size * self.model.vae_scale_factor
def get_noise_shape(self, imsize: Union[int, Tuple[int]], batch_size: int) -> Tuple[int, ...]:
if isinstance(imsize, int):
imsize = (imsize, imsize)
variance_noise_shape = (batch_size,
self.model.unet.config.in_channels,
imsize[-2],
imsize[-1])
return variance_noise_shape
def get_latent_shape(self, orig_image_shape: Union[int, Tuple[int, int]]) -> Tuple[int, ...]:
if isinstance(orig_image_shape, int):
orig_image_shape = (orig_image_shape, orig_image_shape)
return (self.model.unet.config.in_channels,
orig_image_shape[0] // self.model.vae_scale_factor,
orig_image_shape[1] // self.model.vae_scale_factor)
def get_pre_kwargs(self, **kwargs) -> dict:
return {}
class StableDiffWrapper(PipelineWrapper):
def __init__(self, scheduler='ddpm', *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.scheduler_type = scheduler
try:
self.model = StableDiffusionPipeline.from_pretrained(
self.model_id,
torch_dtype=torch.float16 if self.float16 else torch.float32,
token=self.token).to(self.device)
except OSError:
self.model = StableDiffusionPipeline.from_pretrained(
self.model_id,
torch_dtype=torch.float16 if self.float16 else torch.float32,
token=self.token, force_download=True
).to(self.device)
if scheduler == 'ddpm' or 'ddim' in scheduler:
eta = 1.0 if 'ddpm' in scheduler else float(scheduler.split('-')[1])
self.model.scheduler = DDIMWrapper(model_id=self.model_id, device=self.device,
eta=eta,
float16=self.float16, token=self.token)
self.model.scheduler.set_timesteps(self.num_timesteps, device=self.device)
if self.compile:
try:
self.model.unet = torch.compile(self.model.unet, mode="reduce-overhead", fullgraph=True)
except Exception as e:
print(f"Error compiling model: {e}")
def encode_image(self, x: torch.Tensor) -> torch.Tensor:
return (self.model.vae.encode(x).latent_dist.mode() * self.model.vae.config.scaling_factor) # .float()
def decode_image(self, x: torch.Tensor) -> torch.Tensor:
if x.device != self.device:
orig_device = self.model.vae.device
self.model.vae.to(x.device)
ret = self.model.vae.decode(x / self.model.vae.config.scaling_factor).sample.clamp(-1, 1)
self.model.vae.to(orig_device)
return ret
return self.model.vae.decode(x / self.model.vae.config.scaling_factor).sample.clamp(-1, 1)
def encode_prompt(self, prompt: torch.Tensor, negative_prompt=None) -> Tuple[torch.Tensor, torch.Tensor]:
do_cfg = (negative_prompt is not None) or prompt != ""
prompt_embeds, negative_prompt_embeds = self.model.encode_prompt(
prompt, self.device, 1,
do_cfg,
negative_prompt,
)
if do_cfg:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def get_epst(self, xt: torch.Tensor, t: torch.Tensor, prompt_embeds: torch.Tensor,
guidance_scale: Optional[float] = None, return_everything=False, **kwargs):
do_cfg = prompt_embeds.shape[0] > 1
xt = torch.cat([xt] * 2) if do_cfg else xt
# predict the noise residual
noise_pred = self.model.unet(xt, t, encoder_hidden_states=prompt_embeds, return_dict=False)[0]
# perform guidance
if do_cfg:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
return None, noise_pred_uncond, noise_pred_text
return None, noise_pred, None
class SchedulerWrapper(object):
def __init__(self, model_id: str, device: torch.device,
float16: bool = False, token: Optional[str] = None, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.model_id = model_id
self.device = device
self.float16 = float16
self.token = token
self.scheduler = None
@property
def timesteps(self) -> torch.Tensor:
return self.scheduler.timesteps
def set_timesteps(self, timesteps: int, device: torch.device) -> None:
self.scheduler.set_timesteps(timesteps, device=device)
if self.scheduler.timesteps[0] == 1000:
self.scheduler.timesteps -= 1
def get_x_0_hat(self, xt: torch.Tensor, epst: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
pass
def finish_step(self, xt: torch.Tensor, pred_x0: torch.Tensor, epst: torch.Tensor,
timestep: torch.Tensor, variance_noise: torch.Tensor,
**kwargs) -> torch.Tensor:
pass
def get_variance(self, timestep: torch.Tensor) -> torch.Tensor:
pass
class DDIMWrapper(SchedulerWrapper):
def __init__(self, eta, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.scheduler = DDIMScheduler.from_pretrained(
self.model_id, subfolder="scheduler",
torch_dtype=torch.float16 if self.float16 else torch.float32,
token=self.token,
device=self.device, timestep_spacing='linspace')
self.eta = eta
def get_x_0_hat(self, xt: torch.Tensor, epst: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
# compute alphas, betas
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
beta_prod_t = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.scheduler.config.prediction_type == 'epsilon':
pred_original_sample = (xt - beta_prod_t ** (0.5) * epst) / alpha_prod_t ** (0.5)
elif self.scheduler.config.prediction_type == 'v_prediction':
pred_original_sample = (alpha_prod_t ** 0.5) * xt - (beta_prod_t ** 0.5) * epst
return pred_original_sample
def finish_step(self, xt: torch.Tensor, pred_x0: torch.Tensor, epst: torch.Tensor,
timestep: torch.Tensor, variance_noise: torch.Tensor,
eta=None) -> torch.Tensor:
if eta is None:
eta = self.eta
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // \
self.scheduler.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self._get_alpha_prod_t_prev(prev_timestep)
beta_prod_t = 1 - alpha_prod_t
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
variance = self.get_variance(timestep)
std_dev_t = eta * variance ** (0.5)
# std_dev_t = eta * variance ** (0.5)
# Take care of asymetric reverse process (asyrp)
if self.scheduler.config.prediction_type == 'epsilon':
model_output_direction = epst
elif self.scheduler.config.prediction_type == 'v_prediction':
model_output_direction = (alpha_prod_t**0.5) * epst + (beta_prod_t**0.5) * xt
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_x0 + pred_sample_direction
# 8. Add noice if eta > 0
if eta > 0:
sigma_z = std_dev_t * variance_noise
prev_sample = prev_sample + sigma_z
return prev_sample
def get_variance(self, timestep: torch.Tensor) -> torch.Tensor:
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // \
self.scheduler.num_inference_steps
variance = self.scheduler._get_variance(timestep, prev_timestep)
return variance
def _get_alpha_prod_t_prev(self, prev_timestep: torch.Tensor) -> torch.Tensor:
return self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 \
else self.scheduler.final_alpha_cumprod
def load_model(model_id: str, timesteps: int,
device: torch.device, blip: bool = False,
float16: bool = False, token: Optional[str] = None,
compile: bool = True,
blip_model="Salesforce/blip2-opt-2.7b-coco", scheduler: str = 'ddpm') -> PipelineWrapper:
pipeline = StableDiffWrapper(model_id=model_id, timesteps=timesteps, device=device,
scheduler=scheduler,
float16=float16, token=token, compile=compile)
pipeline = pipeline.to(device)
if blip:
pipeline.blip_processor = Blip2Processor.from_pretrained(blip_model)
try:
print(device if torch.cuda.get_device_properties(0).total_memory/(1024**3) > 18 else 'cpu')
pipeline.blip_model = Blip2ForConditionalGeneration.from_pretrained(
blip_model,).to(device if torch.cuda.get_device_properties(0).total_memory/(1024**3) > 18 else 'cpu')
except OSError:
pipeline.blip_model = Blip2ForConditionalGeneration.from_pretrained(
blip_model, force_download=True).to(device if torch.cuda.get_device_properties(0).total_memory/(1024**3) > 18 else 'cpu')
pipeline.blip_max_words = 32
image_size = pipeline.get_image_size()
return pipeline, image_size
|