Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,259 Bytes
b273838 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os
from functools import partial
import cv2
import gradio as gr
import spaces
from util.file import generate_binary_file, load_numpy_from_binary_bitwise
import torch
import yaml
from util.basicsr_img_util import img2tensor, tensor2img
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from torchvision.transforms.functional import resize
from guided_diffusion.gaussian_diffusion import create_sampler
from guided_diffusion.swinir import SwinIR
from guided_diffusion.unet import create_model
def create_swinir_model(ckpt_path):
cfg = {
'in_channels': 3,
'out_channels': 3,
'embed_dim': 180,
'depths': [6, 6, 6, 6, 6, 6, 6, 6],
'num_heads': [6, 6, 6, 6, 6, 6, 6, 6],
'resi_connection': '1conv',
'sf': 8
}
mmse_model = SwinIR(
img_size=64,
patch_size=1,
in_chans=cfg['in_channels'],
num_out_ch=cfg['out_channels'],
embed_dim=cfg['embed_dim'],
depths=cfg['depths'],
num_heads=cfg['num_heads'],
window_size=8,
mlp_ratio=2,
sf=cfg['sf'],
img_range=1.0,
upsampler="nearest+conv",
resi_connection=cfg['resi_connection'],
unshuffle=True,
unshuffle_scale=8
)
ckpt = torch.load(ckpt_path, map_location="cpu")
if 'params_ema' in ckpt:
mmse_model.load_state_dict(ckpt['params_ema'])
else:
state_dict = ckpt['state_dict']
state_dict = {layer_name.replace('model.', ''): weights for layer_name, weights in
state_dict.items()}
state_dict = {layer_name.replace('module.', ''): weights for layer_name, weights in
state_dict.items()}
mmse_model.load_state_dict(state_dict)
for param in mmse_model.parameters():
param.requires_grad = False
return mmse_model
ffhq_diffusion_model = "./guided_diffusion/iddpm_ffhq512_ema500000.pth"
mmse_model_ckpt = "./guided_diffusion/swinir_restoration512_L1.pth"
if not os.path.exists(ffhq_diffusion_model):
os.system(
"wget https://github.com/zsyOAOA/DifFace/releases/download/V1.0/iddpm_ffhq512_ema500000.pth -O ./guided_diffusion/iddpm_ffhq512_ema500000.pth"
)
if not os.path.exists(mmse_model_ckpt):
os.system(
"wget https://github.com/zsyOAOA/DifFace/releases/download/V1.0/swinir_restoration512_L1.pth -O ./guided_diffusion/swinir_restoration512_L1.pth"
)
def load_yaml(file_path: str) -> dict:
with open(file_path) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
return config
model_config = './guided_diffusion/ffhq512_model_config.yaml'
diffusion_config = './guided_diffusion/diffusion_config.yaml'
model_config = load_yaml(model_config)
diffusion_config = load_yaml(diffusion_config)
models = {
'main_model': create_model(**model_config),
'mmse_model': create_swinir_model('./guided_diffusion/swinir_restoration512_L1.pth')
}
models['main_model'].eval()
models['mmse_model'].eval()
@torch.no_grad()
@spaces.GPU(duration=80)
def generate_reconstruction(degraded_face_img, K, T, iqa_metric, iqa_coef, loaded_indices):
assert iqa_metric in ['niqe', 'clipiqa+', 'topiq_nr-face']
diffusion_config['timestep_respacing'] = T
sampler = create_sampler(**diffusion_config)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models['main_model'].to(device)
mmse_model = models['mmse_model'].to(device)
sample_fn = partial(sampler.p_sample_loop_blind_restoration, model=model, num_opt_noises=K,
eta=1.0, iqa_metric=iqa_metric, iqa_coef=iqa_coef)
if degraded_face_img is not None:
mmse_img = mmse_model(degraded_face_img).clip(0, 1) * 2 - 1
x_start = torch.randn(mmse_img.shape, device=device)
else:
mmse_img = None
x_start = torch.randn(1, 3, 512, 512, device=device)
restored_face, indices = sample_fn(x_start=x_start, mmse_img=mmse_img, loaded_indices=loaded_indices)
return restored_face, indices
def resize(img, size):
# From https://github.com/sczhou/CodeFormer/blob/master/facelib/utils/face_restoration_helper.py
h, w = img.shape[0:2]
scale = size / min(h, w)
h, w = int(h * scale), int(w * scale)
interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
return cv2.resize(img, (w, h), interpolation=interp)
@torch.no_grad()
@spaces.GPU(duration=80)
def enhance_faces(img, face_helper, has_aligned, K, T, iqa_metric, iqa_coef, loaded_indices):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
face_helper.clean_all()
if has_aligned: # The inputs are already aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
face_helper.input_img = resize(face_helper.input_img, 640)
face_helper.get_face_landmarks_5(only_center_face=False, eye_dist_threshold=5)
face_helper.align_warp_face()
if len(face_helper.cropped_faces) == 0:
raise gr.Error("Could not identify any face in the image.")
if has_aligned and len(face_helper.cropped_faces) > 1:
raise gr.Error(
"You marked that the input image is aligned, but multiple faces were detected."
)
restored_faces = []
generated_indices = []
for i, cropped_face in enumerate(face_helper.cropped_faces):
cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
cur_loaded_indices = loaded_indices[i] if loaded_indices is not None else None
output, indices = generate_reconstruction(
cropped_face_t,
K,
T,
iqa_metric,
iqa_coef,
cur_loaded_indices
)
restored_face = tensor2img(
output.to(torch.float32).squeeze(0), rgb2bgr=False, min_max=(-1, 1)
)
restored_face = restored_face.astype("uint8")
restored_faces.append(restored_face),
generated_indices.append(indices)
return restored_faces, generated_indices
@torch.no_grad()
@spaces.GPU()
def decompress_face(K, T, iqa_metric, iqa_coef, loaded_indices):
assert loaded_indices is not None
output, indices = generate_reconstruction(
None,
K,
T,
iqa_metric,
iqa_coef,
loaded_indices
)
restored_face = tensor2img(
output.to(torch.float32).squeeze(0), rgb2bgr=False, min_max=(-1, 1)
).astype("uint8")
return restored_face, loaded_indices
@torch.no_grad()
@spaces.GPU(duration=80)
def inference(
img,
T,
K,
iqa_metric,
iqa_coef,
aligned,
bitstream=None,
progress=gr.Progress(track_tqdm=True),
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
iqa_metric_to_pyiqa_name = {
'NIQE': 'niqe',
'TOPIQ': 'topiq_nr-face',
'CLIP-IQA': 'clipiqa+'
}
iqa_metric = iqa_metric_to_pyiqa_name[iqa_metric]
indices = load_numpy_from_binary_bitwise(bitstream, K, T, 'ffhq', T)
if indices is not None:
indices = indices.to(device)
if img is not None:
img = cv2.imread(img, cv2.IMREAD_COLOR)
h, w = img.shape[0:2]
if h > 4500 or w > 4500:
raise gr.Error("Image size too large.")
face_helper = FaceRestoreHelper(
1,
face_size=512,
crop_ratio=(1, 1),
det_model="retinaface_resnet50",
save_ext="png",
use_parse=True,
device=device,
model_rootpath=None,
)
x, indices = enhance_faces(
img, face_helper, aligned, K=K, T=T, iqa_metric=iqa_metric, iqa_coef=iqa_coef,
loaded_indices=indices,
)
else:
x, indices = decompress_face(
K=K, T=T, iqa_metric=iqa_metric, iqa_coef=iqa_coef, loaded_indices=indices,
)
torch.cuda.empty_cache()
if bitstream is None:
indices = [generate_binary_file(index.numpy(), K, T, 'ffhq') for index in indices]
return x, indices
return x
|