File size: 1,088 Bytes
b8fae7b 0c9eb4b b8fae7b 0c9eb4b b8fae7b 8ad062b 0c9eb4b b8fae7b 0c9eb4b b8fae7b 0c9eb4b b8fae7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from accelerate import init_empty_weights
from transformers import AutoModelForCausalLM, AutoTokenizer
# Charger le modèle
model_name = "bigcode/starcoder2-15b-instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialisation conditionnelle
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)
# Fonction pour générer du texte
def generate_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(inputs["input_ids"], max_length=200)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Interface utilisateur Gradio
interface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(label="Entrez votre instruction"),
outputs=gr.Textbox(label="Résultat généré"),
title="StarCoder2-15B-Instruct"
)
# Lancer l'application
interface.launch()
|