Spaces:
Runtime error
Runtime error
File size: 1,190 Bytes
c27e90c 75d6c8e 0b3461a b5d7986 ba256cb 75d6c8e c27e90c 75d6c8e 0106d1b 2dd6b21 75d6c8e c27e90c 75d6c8e 30d4d06 75d6c8e 30d4d06 c27e90c 30d4d06 75d6c8e 30d4d06 d69a484 c27e90c 75d6c8e 2dd6b21 75d6c8e 2dd6b21 75d6c8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import streamlit as st
from transformers import pipeline
# Summarization
def summarization(text):
text_model = pipeline("summarization", model="ainize/bart-base-cnn")
summary = text_model(text, max_length=100, temperature=1.0)[0]["generated_text"]
return summary
# Sentiment Classification
def sentiment_classification(summary):
sentiment_model = pipeline("text-classification", model="wxrrrrrrr/finetunde_sentiment_analysis")
result = sentiment_model(summary, max_length=100, truncation=True)[0]['label']
return result
def main():
st.set_page_config(page_title="Your Text Analysis", page_icon="🦜")
st.header("Tell me your comments!")
text_input = st.text_input("Enter your text here:")
if text_input:
# Stage 1: Summarization
st.text('Processing text...')
summary = summarization(text_input)
# st.write(summary)
# Stage 2: Sentiment Classification
st.text('Analyzing sentiment...')
sentiment = sentiment_classification(summary)
st.write(sentiment)
# Display the classification result
st.write("Sentiment:", sentiment)
if __name__ == '__main__':
main() |