Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# app.py
|
2 |
-
#
|
3 |
|
4 |
import gradio as gr
|
5 |
from transformers import AutoTokenizer, Llama4ForConditionalGeneration
|
@@ -23,15 +23,15 @@ except LookupError:
|
|
23 |
# Import the HealthcareFraudAnalyzer
|
24 |
from document_analyzer import HealthcareFraudAnalyzer
|
25 |
|
26 |
-
# Debug: Print environment variables
|
27 |
print("Environment variables:", dict(os.environ))
|
28 |
|
29 |
-
# Retrieve the token from
|
30 |
LLama = os.getenv("LLama")
|
31 |
if not LLama:
|
32 |
raise ValueError("LLama token not found. Set it in Hugging Face Space secrets as 'LLama'.")
|
33 |
|
34 |
-
# Debug: Print token (first 5 chars
|
35 |
print(f"Retrieved LLama token: {LLama[:5]}...")
|
36 |
|
37 |
# Authenticate with Hugging Face
|
@@ -41,20 +41,19 @@ huggingface_hub.login(token=LLama)
|
|
41 |
MODEL_ID = "meta-llama/Llama-4-Maverick-17B-128E-Instruct"
|
42 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
43 |
|
44 |
-
# Add padding token if it doesn't exist
|
45 |
if tokenizer.pad_token is None:
|
46 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
47 |
|
48 |
-
#
|
49 |
device_map = {
|
50 |
"model.embed_tokens": 0,
|
51 |
-
"model.layers.0-15": 0,
|
52 |
-
"model.layers.16-31": "cpu",
|
53 |
"model.norm": 0,
|
54 |
"lm_head": 0
|
55 |
}
|
56 |
|
57 |
-
# Load model with 8-bit quantization
|
58 |
model = Llama4ForConditionalGeneration.from_pretrained(
|
59 |
MODEL_ID,
|
60 |
torch_dtype=torch.bfloat16,
|
@@ -64,7 +63,7 @@ model = Llama4ForConditionalGeneration.from_pretrained(
|
|
64 |
attn_implementation="flex_attention"
|
65 |
)
|
66 |
|
67 |
-
# Prepare
|
68 |
model = prepare_model_for_kbit_training(model)
|
69 |
peft_config = LoraConfig(
|
70 |
r=16,
|
@@ -77,73 +76,53 @@ peft_config = LoraConfig(
|
|
77 |
model = get_peft_model(model, peft_config)
|
78 |
model.print_trainable_parameters()
|
79 |
|
80 |
-
# Function to create training pairs
|
81 |
def extract_training_pairs_from_text(text):
|
82 |
pairs = []
|
83 |
patterns = [
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
"Facility {} family {} without documented medical necessity. Is this suspicious?",
|
100 |
-
"Yes, unjustified visitation restrictions may indicate attempts to conceal care issues and prevent family oversight. This can constitute fraud when facilities bill for care while violating resident rights."
|
101 |
-
),
|
102 |
-
# Hospice patterns
|
103 |
-
(
|
104 |
-
r"(?i).*?\b(hospice|terminal|end.of.life)\b.*?\b(not|without|lacking)\b.*?\b(evidence|decline|documentation)\b.*?",
|
105 |
-
"Patient placed on {} care {} supporting {}. Is this fraudulent?",
|
106 |
-
"Yes, hospice enrollment without documented terminal decline may indicate Medicare fraud. Hospice certification requires genuine clinical determination of terminal status with prognosis of six months or less."
|
107 |
-
),
|
108 |
-
# Contradictory documentation
|
109 |
-
(
|
110 |
-
r"(?i).*?\b(different|contradicts|conflicts|inconsistent)\b.*?\b(records|documentation|testimony|statements)\b.*?",
|
111 |
-
"Records show {} {} about patient condition. Is this fraudulent documentation?",
|
112 |
-
"Yes, contradictory documentation is a strong indicator of fraudulent record-keeping designed to misrepresent care quality or patient condition, particularly when official records differ from internal communications."
|
113 |
-
)
|
114 |
]
|
115 |
|
116 |
for pattern, input_template, output_text in patterns:
|
117 |
-
|
118 |
-
for match in matches:
|
119 |
groups = match.groups()
|
120 |
if len(groups) >= 2:
|
121 |
-
|
122 |
-
pairs.append({
|
123 |
-
"input": input_text,
|
124 |
-
"output": output_text
|
125 |
-
})
|
126 |
|
127 |
if not pairs:
|
128 |
if any(x in text.lower() for x in ["medication", "prescribed", "administered"]):
|
129 |
pairs.append({
|
130 |
-
"input": "Medication records show
|
131 |
-
"output": "Yes, inconsistent
|
132 |
})
|
133 |
if any(x in text.lower() for x in ["visit", "family", "spouse"]):
|
134 |
pairs.append({
|
135 |
-
"input": "Staff documents
|
136 |
-
"output": "Yes, selective documentation
|
137 |
})
|
138 |
if any(x in text.lower() for x in ["hospice", "terminal", "prognosis"]):
|
139 |
pairs.append({
|
140 |
-
"input": "Patient
|
141 |
-
"output": "Yes,
|
142 |
})
|
143 |
|
144 |
return pairs
|
145 |
|
146 |
-
# Function to process
|
147 |
def train_ui(files):
|
148 |
try:
|
149 |
raw_text = ""
|
@@ -218,15 +197,15 @@ def train_ui(files):
|
|
218 |
except Exception as e:
|
219 |
return f"Error: {str(e)}. Please check file format, dependencies, or the LLama token."
|
220 |
|
221 |
-
# Function to analyze
|
222 |
def analyze_document_ui(files):
|
223 |
try:
|
224 |
if not files:
|
225 |
-
return "Error: No file uploaded. Please upload a PDF
|
226 |
|
227 |
file = files[0]
|
228 |
if not file.name.endswith(".pdf"):
|
229 |
-
return "Error: Please upload a PDF file
|
230 |
|
231 |
raw_text = ""
|
232 |
with pdfplumber.open(file.name) as pdf:
|
@@ -234,43 +213,42 @@ def analyze_document_ui(files):
|
|
234 |
raw_text += page.extract_text() or ""
|
235 |
|
236 |
if not raw_text:
|
237 |
-
return "Error: Could not extract text from
|
238 |
|
239 |
analyzer = HealthcareFraudAnalyzer(model, tokenizer)
|
240 |
results = analyzer.analyze_document(raw_text)
|
241 |
return results["summary"]
|
242 |
|
243 |
except Exception as e:
|
244 |
-
return f"Error during
|
245 |
|
246 |
-
# Gradio UI
|
247 |
with gr.Blocks(title="Healthcare Fraud Detection Suite") as demo:
|
248 |
gr.Markdown("# Healthcare Fraud Detection Suite")
|
249 |
|
250 |
with gr.Tabs():
|
251 |
with gr.TabItem("Fine-Tune Model"):
|
252 |
-
gr.Markdown("## Train Llama 4 for
|
253 |
-
gr.Markdown("Upload PDFs
|
254 |
train_file_input = gr.File(label="Upload Files (PDF/JSON)", file_count="multiple")
|
255 |
train_button = gr.Button("Start Fine-Tuning")
|
256 |
train_output = gr.Textbox(label="Training Status", lines=5)
|
257 |
train_button.click(fn=train_ui, inputs=train_file_input, outputs=train_output)
|
258 |
|
259 |
with gr.TabItem("Analyze Document"):
|
260 |
-
gr.Markdown("## Analyze
|
261 |
-
gr.Markdown("Upload a PDF
|
262 |
-
analyze_file_input = gr.File(label="Upload PDF
|
263 |
analyze_button = gr.Button("Analyze Document")
|
264 |
analyze_output = gr.Markdown(label="Analysis Results")
|
265 |
analyze_button.click(fn=analyze_document_ui, inputs=analyze_file_input, outputs=analyze_output)
|
266 |
|
267 |
gr.Markdown("""
|
268 |
### About This Tool
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
**Note:** All analysis is performed locally - no data is shared externally.
|
273 |
""")
|
274 |
|
275 |
-
# Launch the
|
276 |
demo.launch()
|
|
|
1 |
# app.py
|
2 |
+
# Gradio app for Llama 4 Maverick healthcare fraud detection (text-only with CPU offloading)
|
3 |
|
4 |
import gradio as gr
|
5 |
from transformers import AutoTokenizer, Llama4ForConditionalGeneration
|
|
|
23 |
# Import the HealthcareFraudAnalyzer
|
24 |
from document_analyzer import HealthcareFraudAnalyzer
|
25 |
|
26 |
+
# Debug: Print environment variables
|
27 |
print("Environment variables:", dict(os.environ))
|
28 |
|
29 |
+
# Retrieve the token from secrets
|
30 |
LLama = os.getenv("LLama")
|
31 |
if not LLama:
|
32 |
raise ValueError("LLama token not found. Set it in Hugging Face Space secrets as 'LLama'.")
|
33 |
|
34 |
+
# Debug: Print token (first 5 chars)
|
35 |
print(f"Retrieved LLama token: {LLama[:5]}...")
|
36 |
|
37 |
# Authenticate with Hugging Face
|
|
|
41 |
MODEL_ID = "meta-llama/Llama-4-Maverick-17B-128E-Instruct"
|
42 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
43 |
|
|
|
44 |
if tokenizer.pad_token is None:
|
45 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
46 |
|
47 |
+
# Device map for CPU offloading
|
48 |
device_map = {
|
49 |
"model.embed_tokens": 0,
|
50 |
+
"model.layers.0-15": 0,
|
51 |
+
"model.layers.16-31": "cpu",
|
52 |
"model.norm": 0,
|
53 |
"lm_head": 0
|
54 |
}
|
55 |
|
56 |
+
# Load model with 8-bit quantization
|
57 |
model = Llama4ForConditionalGeneration.from_pretrained(
|
58 |
MODEL_ID,
|
59 |
torch_dtype=torch.bfloat16,
|
|
|
63 |
attn_implementation="flex_attention"
|
64 |
)
|
65 |
|
66 |
+
# Prepare for LoRA training
|
67 |
model = prepare_model_for_kbit_training(model)
|
68 |
peft_config = LoraConfig(
|
69 |
r=16,
|
|
|
76 |
model = get_peft_model(model, peft_config)
|
77 |
model.print_trainable_parameters()
|
78 |
|
79 |
+
# Function to create training pairs
|
80 |
def extract_training_pairs_from_text(text):
|
81 |
pairs = []
|
82 |
patterns = [
|
83 |
+
(r"(?i).*?\b(haloperidol|lorazepam|ativan)\b.*?\b(daily|routine|regular)\b.*?",
|
84 |
+
"Patient receives {} on a {} basis. Is this appropriate?",
|
85 |
+
"This may indicate inappropriate use. Regular psychotropic use without need assessment may violate standards."),
|
86 |
+
(r"(?i).*?\b(missing|omitted|absent|lacking)\b.*?\b(documentation|records|logs|notes)\b.*?",
|
87 |
+
"Facility has {} {} for care. Is this a concern?",
|
88 |
+
"Yes, incomplete records may indicate fraud or attempts to hide issues."),
|
89 |
+
(r"(?i).*?\b(restrict|limit|prevent|block)\b.*?\b(visits|visitation|access|family)\b.*?",
|
90 |
+
"Facility {} family {} without necessity. Is this suspicious?",
|
91 |
+
"Yes, restrictions may hide issues and constitute fraud when billing for care."),
|
92 |
+
(r"(?i).*?\b(hospice|terminal|end.of.life)\b.*?\b(not|without|lacking)\b.*?\b(evidence|decline|documentation)\b.*?",
|
93 |
+
"Patient on {} care {} supporting {}. Is this fraudulent?",
|
94 |
+
"Yes, hospice without documented decline may indicate Medicare fraud."),
|
95 |
+
(r"(?i).*?\b(different|contradicts|conflicts|inconsistent)\b.*?\b(records|documentation|testimony|statements)\b.*?",
|
96 |
+
"Records show {} {} about condition. Is this fraudulent?",
|
97 |
+
"Yes, contradictory records suggest fraudulent misrepresentation.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
]
|
99 |
|
100 |
for pattern, input_template, output_text in patterns:
|
101 |
+
for match in re.finditer(pattern, text):
|
|
|
102 |
groups = match.groups()
|
103 |
if len(groups) >= 2:
|
104 |
+
pairs.append({"input": input_template.format(*groups), "output": output_text})
|
|
|
|
|
|
|
|
|
105 |
|
106 |
if not pairs:
|
107 |
if any(x in text.lower() for x in ["medication", "prescribed", "administered"]):
|
108 |
pairs.append({
|
109 |
+
"input": "Medication records show inconsistent times. Is this concerning?",
|
110 |
+
"output": "Yes, inconsistent timing may indicate fraud or mismanagement."
|
111 |
})
|
112 |
if any(x in text.lower() for x in ["visit", "family", "spouse"]):
|
113 |
pairs.append({
|
114 |
+
"input": "Staff documents visits inconsistently. Is this suspicious?",
|
115 |
+
"output": "Yes, selective documentation suggests fraudulent record-keeping."
|
116 |
})
|
117 |
if any(x in text.lower() for x in ["hospice", "terminal", "prognosis"]):
|
118 |
pairs.append({
|
119 |
+
"input": "Patient on hospice without decline. Is this fraud?",
|
120 |
+
"output": "Yes, lack of decline suggests fraudulent certification."
|
121 |
})
|
122 |
|
123 |
return pairs
|
124 |
|
125 |
+
# Function to process files and train
|
126 |
def train_ui(files):
|
127 |
try:
|
128 |
raw_text = ""
|
|
|
197 |
except Exception as e:
|
198 |
return f"Error: {str(e)}. Please check file format, dependencies, or the LLama token."
|
199 |
|
200 |
+
# Function to analyze documents
|
201 |
def analyze_document_ui(files):
|
202 |
try:
|
203 |
if not files:
|
204 |
+
return "Error: No file uploaded. Please upload a PDF."
|
205 |
|
206 |
file = files[0]
|
207 |
if not file.name.endswith(".pdf"):
|
208 |
+
return "Error: Please upload a PDF file."
|
209 |
|
210 |
raw_text = ""
|
211 |
with pdfplumber.open(file.name) as pdf:
|
|
|
213 |
raw_text += page.extract_text() or ""
|
214 |
|
215 |
if not raw_text:
|
216 |
+
return "Error: Could not extract text from PDF."
|
217 |
|
218 |
analyzer = HealthcareFraudAnalyzer(model, tokenizer)
|
219 |
results = analyzer.analyze_document(raw_text)
|
220 |
return results["summary"]
|
221 |
|
222 |
except Exception as e:
|
223 |
+
return f"Error during analysis: {str(e)}"
|
224 |
|
225 |
+
# Gradio UI
|
226 |
with gr.Blocks(title="Healthcare Fraud Detection Suite") as demo:
|
227 |
gr.Markdown("# Healthcare Fraud Detection Suite")
|
228 |
|
229 |
with gr.Tabs():
|
230 |
with gr.TabItem("Fine-Tune Model"):
|
231 |
+
gr.Markdown("## Train Llama 4 for Fraud Detection")
|
232 |
+
gr.Markdown("Upload PDFs or JSON with training pairs.")
|
233 |
train_file_input = gr.File(label="Upload Files (PDF/JSON)", file_count="multiple")
|
234 |
train_button = gr.Button("Start Fine-Tuning")
|
235 |
train_output = gr.Textbox(label="Training Status", lines=5)
|
236 |
train_button.click(fn=train_ui, inputs=train_file_input, outputs=train_output)
|
237 |
|
238 |
with gr.TabItem("Analyze Document"):
|
239 |
+
gr.Markdown("## Analyze for Fraud Indicators")
|
240 |
+
gr.Markdown("Upload a PDF to scan for fraud, neglect, or abuse.")
|
241 |
+
analyze_file_input = gr.File(label="Upload PDF")
|
242 |
analyze_button = gr.Button("Analyze Document")
|
243 |
analyze_output = gr.Markdown(label="Analysis Results")
|
244 |
analyze_button.click(fn=analyze_document_ui, inputs=analyze_file_input, outputs=analyze_output)
|
245 |
|
246 |
gr.Markdown("""
|
247 |
### About This Tool
|
248 |
+
Uses Llama 4 Maverick to detect fraud in healthcare documents.
|
249 |
+
Fine-tune with custom data or analyze PDFs for suspicious patterns.
|
250 |
+
**Note:** All analysis is local - no data is shared.
|
|
|
251 |
""")
|
252 |
|
253 |
+
# Launch the app
|
254 |
demo.launch()
|