Update document_analyzer.py
Browse files- document_analyzer.py +39 -249
document_analyzer.py
CHANGED
@@ -1,261 +1,51 @@
|
|
1 |
# document_analyzer.py
|
2 |
-
#
|
3 |
|
4 |
import torch
|
5 |
-
import re
|
6 |
-
from typing import List, Dict, Any
|
7 |
import nltk
|
8 |
from nltk.tokenize import sent_tokenize
|
9 |
|
10 |
-
try:
|
11 |
-
nltk.data.find('tokenizers/punkt')
|
12 |
-
except LookupError:
|
13 |
-
nltk.download('punkt')
|
14 |
-
|
15 |
class HealthcareFraudAnalyzer:
|
16 |
-
def __init__(self, model, tokenizer,
|
17 |
self.model = model
|
18 |
self.tokenizer = tokenizer
|
19 |
-
self.
|
20 |
-
self.
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
"Documentation issues",
|
26 |
-
"Visitation restrictions",
|
27 |
-
"Medication misuse",
|
28 |
-
"Chemical restraint",
|
29 |
-
"Fraudulent billing",
|
30 |
-
"False testimony",
|
31 |
-
"Information concealment",
|
32 |
-
"Patient neglect",
|
33 |
-
"Hospice certification issues"
|
34 |
-
]
|
35 |
-
|
36 |
-
self.key_terms = {
|
37 |
-
"medication": ["haloperidol", "lorazepam", "sedation", "chemical", "restraint",
|
38 |
-
"prn", "as needed", "antipsychotic", "sedative", "benadryl",
|
39 |
-
"ativan", "seroquel", "comfort kit", "medication"],
|
40 |
-
"documentation": ["record", "documentation", "log", "chart", "note", "missing",
|
41 |
-
"altered", "backdated", "omit", "selective", "inconsistent"],
|
42 |
-
"visitation": ["visit", "restriction", "limit", "family", "spouse", "access",
|
43 |
-
"barrier", "monitor", "disruptive", "uncooperative"],
|
44 |
-
"consent": ["consent", "authorize", "approval", "permission", "against wishes",
|
45 |
-
"refused", "decline", "without knowledge"],
|
46 |
-
"hospice": ["hospice", "terminal", "end of life", "palliative", "comfort care",
|
47 |
-
"six months", "6 months", "prognosis", "certification"],
|
48 |
-
"billing": ["charge", "bill", "payment", "medicare", "medicaid", "insurance",
|
49 |
-
"reimbursement", "fee", "additional", "extra"]
|
50 |
-
}
|
51 |
-
|
52 |
-
def chunk_document(self, text: str, chunk_size: int = 1024, overlap: int = 256) -> List[str]:
|
53 |
-
sentences = sent_tokenize(text)
|
54 |
-
chunks = []
|
55 |
-
current_chunk = ""
|
56 |
-
|
57 |
-
for sentence in sentences:
|
58 |
-
if len(current_chunk) + len(sentence) <= chunk_size:
|
59 |
-
current_chunk += sentence + " "
|
60 |
-
else:
|
61 |
-
chunks.append(current_chunk.strip())
|
62 |
-
overlap_start = max(0, len(current_chunk) - overlap)
|
63 |
-
current_chunk = current_chunk[overlap_start:] + sentence + " "
|
64 |
-
|
65 |
-
if current_chunk.strip():
|
66 |
-
chunks.append(current_chunk.strip())
|
67 |
-
|
68 |
-
return chunks
|
69 |
-
|
70 |
-
def analyze_chunk(self, chunk: str) -> Dict[str, Any]:
|
71 |
-
prompt = f"""<s>[INST] Analyze the following healthcare document text for evidence of fraud, neglect, abuse, or criminal conduct.
|
72 |
-
Focus on: {', '.join(self.fraud_categories)}.
|
73 |
-
Provide specific indicators and cite the relevant text.
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
output = self.model.generate(
|
84 |
-
**inputs,
|
85 |
-
max_new_tokens=512,
|
86 |
-
temperature=0.1,
|
87 |
-
top_p=0.9,
|
88 |
-
repetition_penalty=1.2
|
89 |
)
|
90 |
-
|
91 |
-
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
92 |
-
analysis = response.split("ANALYSIS:")[-1].strip()
|
93 |
-
|
94 |
-
term_matches = self._find_key_terms(chunk)
|
95 |
-
|
96 |
-
return {
|
97 |
-
"analysis": analysis,
|
98 |
-
"term_matches": term_matches,
|
99 |
-
"chunk_text": chunk[:200] + "..." if len(chunk) > 200 else chunk
|
100 |
-
}
|
101 |
-
|
102 |
-
def _find_key_terms(self, text: str) -> Dict[str, List[str]]:
|
103 |
-
text = text.lower()
|
104 |
-
results = {}
|
105 |
-
|
106 |
-
for category, terms in self.key_terms.items():
|
107 |
-
matches = []
|
108 |
-
for term in terms:
|
109 |
-
pattern = r'.{0,50}' + re.escape(term) + r'.{0,50}'
|
110 |
-
for match in re.finditer(pattern, text):
|
111 |
-
matches.append("..." + match.group(0) + "...")
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
def _consolidate_analyses(self, chunk_analyses: List[Dict[str, Any]]) -> Dict[str, Any]:
|
137 |
-
all_term_matches = {category: [] for category in self.key_terms.keys()}
|
138 |
-
|
139 |
-
for analysis in chunk_analyses:
|
140 |
-
for category, matches in analysis.get("term_matches", {}).items():
|
141 |
-
all_term_matches[category].extend(matches)
|
142 |
-
|
143 |
-
for category in all_term_matches:
|
144 |
-
if all_term_matches[category]:
|
145 |
-
deduplicated = []
|
146 |
-
for match in all_term_matches[category]:
|
147 |
-
if not any(match in other and match != other for other in all_term_matches[category]):
|
148 |
-
deduplicated.append(match)
|
149 |
-
all_term_matches[category] = deduplicated[:5]
|
150 |
-
|
151 |
-
categorized_findings = {category: [] for category in self.fraud_categories}
|
152 |
-
|
153 |
-
for analysis in chunk_analyses:
|
154 |
-
analysis_text = analysis.get("analysis", "")
|
155 |
-
for category in self.fraud_categories:
|
156 |
-
if category.lower() in analysis_text.lower():
|
157 |
-
sentences = sent_tokenize(analysis_text)
|
158 |
-
relevant = [s for s in sentences if category.lower() in s.lower()]
|
159 |
-
if relevant:
|
160 |
-
categorized_findings[category].extend(relevant)
|
161 |
-
|
162 |
-
return {
|
163 |
-
"term_matches": all_term_matches,
|
164 |
-
"categorized_findings": categorized_findings
|
165 |
-
}
|
166 |
-
|
167 |
-
def _generate_summary(self, findings: Dict[str, Any], full_text: str) -> str:
|
168 |
-
indicator_counts = {
|
169 |
-
category: len(findings["categorized_findings"].get(category, []))
|
170 |
-
for category in self.fraud_categories
|
171 |
-
}
|
172 |
-
|
173 |
-
term_match_counts = {
|
174 |
-
category: len(matches)
|
175 |
-
for category, matches in findings["term_matches"].items()
|
176 |
-
}
|
177 |
-
|
178 |
-
sorted_categories = sorted(
|
179 |
-
self.fraud_categories,
|
180 |
-
key=lambda x: indicator_counts.get(x, 0) + term_match_counts.get(x, 0),
|
181 |
-
reverse=True
|
182 |
-
)
|
183 |
-
|
184 |
-
summary_lines = ["# Healthcare Fraud Detection Analysis", ""]
|
185 |
-
summary_lines.append("## Key Concerns Identified")
|
186 |
-
|
187 |
-
for category in sorted_categories[:3]:
|
188 |
-
if indicator_counts.get(category, 0) > 0 or term_match_counts.get(category, 0) > 0:
|
189 |
-
summary_lines.append(f"### {category}")
|
190 |
-
|
191 |
-
if findings["categorized_findings"].get(category):
|
192 |
-
summary_lines.append("Model analysis indicates:")
|
193 |
-
for finding in findings["categorized_findings"].get(category, [])[:3]:
|
194 |
-
summary_lines.append(f"- {finding}")
|
195 |
-
|
196 |
-
category_lower = category.lower().rstrip('s')
|
197 |
-
for term_category, matches in findings["term_matches"].items():
|
198 |
-
if category_lower in term_category.lower() and matches:
|
199 |
-
summary_lines.append(f"Key terms identified:")
|
200 |
-
for match in matches[:3]:
|
201 |
-
summary_lines.append(f"- {match}")
|
202 |
-
|
203 |
-
summary_lines.append("")
|
204 |
-
|
205 |
-
summary_lines.append("## Recommended Actions")
|
206 |
-
if sum(indicator_counts.values()) > 5:
|
207 |
-
summary_lines.append("- **Urgent review recommended** - Multiple indicators of potential fraud detected")
|
208 |
-
summary_lines.append("- Consider referral to appropriate regulatory authorities")
|
209 |
-
summary_lines.append("- Document preservation should be prioritized")
|
210 |
-
elif sum(indicator_counts.values()) > 2:
|
211 |
-
summary_lines.append("- **Further investigation recommended** - Several potential indicators identified")
|
212 |
-
summary_lines.append("- Conduct interviews with involved personnel")
|
213 |
-
summary_lines.append("- Secure additional documentation for verification")
|
214 |
-
else:
|
215 |
-
summary_lines.append("- **Monitor situation** - Limited indicators detected")
|
216 |
-
summary_lines.append("- Consider more specific document analysis")
|
217 |
-
|
218 |
-
return "\n".join(summary_lines)
|
219 |
-
|
220 |
-
def print_report(self, results: Dict[str, Any]) -> None:
|
221 |
-
print("\n" + "="*80)
|
222 |
-
print("HEALTHCARE FRAUD DETECTION REPORT")
|
223 |
-
print("="*80 + "\n")
|
224 |
-
|
225 |
-
print(results["summary"])
|
226 |
-
|
227 |
-
print("\n" + "="*80)
|
228 |
-
print("DETAILED FINDINGS")
|
229 |
-
print("="*80)
|
230 |
-
|
231 |
-
for category, findings in results["detailed_findings"]["categorized_findings"].items():
|
232 |
-
if findings:
|
233 |
-
print(f"\n## {category.upper()}")
|
234 |
-
for i, finding in enumerate(findings, 1):
|
235 |
-
print(f"{i}. {finding}")
|
236 |
-
|
237 |
-
print("\n" + "="*80)
|
238 |
-
print("KEY TERM MATCHES")
|
239 |
-
print("="*80)
|
240 |
-
|
241 |
-
for category, matches in results["detailed_findings"]["term_matches"].items():
|
242 |
-
if matches:
|
243 |
-
print(f"\n## {category.upper()}")
|
244 |
-
for match in matches:
|
245 |
-
print(f"- {match}")
|
246 |
-
|
247 |
-
print("\n" + "="*80 + "\n")
|
248 |
-
|
249 |
-
def analyze_pdf_for_fraud(pdf_path, model, tokenizer):
|
250 |
-
import pdfplumber
|
251 |
-
|
252 |
-
with pdfplumber.open(pdf_path) as pdf:
|
253 |
-
text = ""
|
254 |
-
for page in pdf.pages:
|
255 |
-
text += page.extract_text() or ""
|
256 |
-
|
257 |
-
analyzer = HealthcareFraudAnalyzer(model, tokenizer)
|
258 |
-
results = analyzer.analyze_document(text)
|
259 |
-
|
260 |
-
analyzer.print_report(results)
|
261 |
-
return results
|
|
|
1 |
# document_analyzer.py
|
2 |
+
# Analyzer for healthcare fraud detection using Llama 4 Maverick (text-only)
|
3 |
|
4 |
import torch
|
|
|
|
|
5 |
import nltk
|
6 |
from nltk.tokenize import sent_tokenize
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
class HealthcareFraudAnalyzer:
|
9 |
+
def __init__(self, model, tokenizer, accelerator):
|
10 |
self.model = model
|
11 |
self.tokenizer = tokenizer
|
12 |
+
self.accelerator = accelerator
|
13 |
+
self.device = self.accelerator.device
|
14 |
+
try:
|
15 |
+
nltk.data.find('tokenizers/punkt')
|
16 |
+
except LookupError:
|
17 |
+
nltk.download('punkt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
def analyze_document(self, sentences):
|
20 |
+
fraud_indicators = []
|
21 |
+
for sentence in sentences:
|
22 |
+
prompt = (
|
23 |
+
f"Analyze the following sentence for potential healthcare fraud indicators, "
|
24 |
+
f"such as consent violations, medication misuse, or billing irregularities. "
|
25 |
+
f"Provide a reason and confidence score (0-1). "
|
26 |
+
f"Sentence: {sentence}\nOutput format: {{'fraud_detected': bool, 'reason': str, 'confidence': float}}"
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512).to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = self.model.generate(
|
32 |
+
**inputs,
|
33 |
+
max_new_tokens=256,
|
34 |
+
temperature=0.7,
|
35 |
+
top_p=0.9,
|
36 |
+
do_sample=True
|
37 |
+
)
|
38 |
+
|
39 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
+
try:
|
41 |
+
result = eval(response) if response.startswith("{") else {"fraud_detected": False, "reason": "Invalid response", "confidence": 0.0}
|
42 |
+
if result["fraud_detected"]:
|
43 |
+
fraud_indicators.append({
|
44 |
+
"sentence": sentence,
|
45 |
+
"reason": result["reason"],
|
46 |
+
"confidence": result["confidence"]
|
47 |
+
})
|
48 |
+
except:
|
49 |
+
continue
|
50 |
+
|
51 |
+
return fraud_indicators
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|