Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,428 Bytes
f26b7a5 7814ee2 f26b7a5 7814ee2 f26b7a5 7814ee2 fa56145 7814ee2 149c25a fa56145 f26b7a5 fa56145 7814ee2 149c25a 7814ee2 149c25a 7814ee2 149c25a 7814ee2 f26b7a5 75b5466 149c25a 137db14 7814ee2 75b5466 7814ee2 f26b7a5 7814ee2 f26b7a5 7814ee2 f26b7a5 7814ee2 f26b7a5 7814ee2 f26b7a5 7814ee2 f26b7a5 7814ee2 f26b7a5 7814ee2 f26b7a5 7814ee2 f26b7a5 75b5466 fa56145 75b5466 383458e b40961b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import asyncio
from datetime import datetime
import os
import random
import time
from typing import Dict, List
import torch
import uvicorn
from sound_generator import generate_sound, generate_music
from fastapi import Depends, FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from fastapi.responses import FileResponse, HTMLResponse
from pydantic import BaseModel
# Create the FastAPI app with custom docs URL
app = FastAPI(
title="API de Sonidos Generativos",
description="API para generar sonidos y m煤sica basados en prompts",
version="1.0.0",
docs_url="/docs",
redoc_url="/redoc",
)
# Configuraci贸n de templates
templates = Jinja2Templates(directory="templates")
# Configuraci贸n de CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class AudioRequest(BaseModel):
prompt: str
class GPUQuotaConfig:
MAX_REQUEST_DURATION = 20 # segundos m谩ximos por solicitud
DAILY_QUOTA = 300 # 5 minutos en total (300 segundos)
class QuotaTracker:
def __init__(self):
self.users_quota: Dict[str, int] = {}
self.user_reset_times: Dict[str, datetime] = {}
self.current_user_index = 0
self.registered_users: List[str] = []
def register_user(self, user_id: str):
if user_id not in self.registered_users:
self.registered_users.append(user_id)
self.users_quota[user_id] = GPUQuotaConfig.DAILY_QUOTA
self.user_reset_times[user_id] = datetime.now() + datetime.timedelta(days=1)
def get_next_available_user(self):
# Verificar resets
for user_id in list(self.user_reset_times.keys()):
if datetime.now() > self.user_reset_times[user_id]:
self.users_quota[user_id] = GPUQuotaConfig.DAILY_QUOTA
self.user_reset_times[user_id] = datetime.now() + datetime.timedelta(days=1)
# Encontrar usuario con cuota
attempts = 0
while attempts < len(self.registered_users):
self.current_user_index = (self.current_user_index + 1) % max(1, len(self.registered_users))
current_user = self.registered_users[self.current_user_index]
if self.users_quota.get(current_user, 0) >= GPUQuotaConfig.MAX_REQUEST_DURATION:
return current_user
attempts += 1
return None
def consume_quota(self, user_id: str, seconds: int):
if user_id in self.users_quota:
self.users_quota[user_id] = max(0, self.users_quota[user_id] - seconds)
return True
return False
def get_remaining_quota(self, user_id: str):
if user_id in self.users_quota:
# Verificar si se debe resetear
if datetime.now() > self.user_reset_times.get(user_id, datetime.max):
self.users_quota[user_id] = GPUQuotaConfig.DAILY_QUOTA
self.user_reset_times[user_id] = datetime.now() + datetime.timedelta(days=1)
return self.users_quota[user_id]
return 0
def get_system_status(self):
return {
"registered_users": len(self.registered_users),
"users_with_quota": sum(1 for q in self.users_quota.values() if q >= GPUQuotaConfig.MAX_REQUEST_DURATION),
"total_available_seconds": sum(self.users_quota.values())
}
# Inicializar sistema
quota_tracker = QuotaTracker()
# Registrar usuarios virtuales
for i in range(5):
quota_tracker.register_user(f"virtual_user_{i}")
# Sem谩foro para controlar acceso a GPU - solo una tarea a la vez
gpu_semaphore = asyncio.Semaphore(1)
# Middleware para asignar user_id
@app.middleware("http")
async def assign_user_id(request: Request, call_next):
if "user-id" not in request.headers:
request.state.user_id = f"anonymous_{random.randint(1000, 9999)}"
quota_tracker.register_user(request.state.user_id)
else:
request.state.user_id = request.headers["user-id"]
quota_tracker.register_user(request.state.user_id)
response = await call_next(request)
return response
async def get_user_id(request: Request):
return request.state.user_id
# Funci贸n para manejar la generaci贸n con control de GPU
async def process_with_gpu(generation_func, prompt, process_id):
start_time = time.time()
print(f"[{process_id}] Iniciando procesamiento GPU")
# Buscar usuario con cuota disponible
user_id = quota_tracker.get_next_available_user()
if not user_id:
raise HTTPException(status_code=429, detail="No hay cuota GPU disponible en el sistema")
quota_available = quota_tracker.get_remaining_quota(user_id)
print(f"[{process_id}] Usando cuota de usuario {user_id}: {quota_available}s disponibles")
# Verificar si hay suficiente cuota
if quota_available < GPUQuotaConfig.MAX_REQUEST_DURATION:
raise HTTPException(status_code=429, detail=f"Cuota GPU insuficiente ({quota_available}s disponibles)")
# Verificar que los modelos usen GPU si est谩 disponible
use_gpu = torch.cuda.is_available()
device = 'cuda' if use_gpu else 'cpu'
print(f"[{process_id}] Usando dispositivo: {device}")
try:
# Llamar a la funci贸n de generaci贸n con l铆mite de tiempo
audio_file_path = await asyncio.to_thread(
generation_func, prompt, device, user_id
)
# Liberar memoria GPU si se utiliz贸
if use_gpu:
torch.cuda.empty_cache()
# Calcular tiempo real usado
elapsed_time = min(GPUQuotaConfig.MAX_REQUEST_DURATION, int(time.time() - start_time))
# Consumir cuota
quota_tracker.consume_quota(user_id, elapsed_time)
print(f"[{process_id}] Procesamiento completado en {elapsed_time}s, cuota restante: {quota_tracker.get_remaining_quota(user_id)}s")
return audio_file_path
except Exception as e:
# Asegurar que liberamos memoria en caso de error
if use_gpu:
torch.cuda.empty_cache()
print(f"[{process_id}] Error: {str(e)}")
raise e
# Home page with API information
@app.get("/", response_class=HTMLResponse)
def home(request: Request):
return templates.TemplateResponse("home.html", {"request": request})
# Prueba para verificar si la API funciona - la dejamos por ahora para debugging
@app.get("/health")
def health_check():
"""Endpoint para verificar que el servicio est谩 funcionando correctamente"""
return {"status": "ok", "service": "Sound Generation API"}
@app.post("/generate-sound/")
async def generate_sound_endpoint(request: AudioRequest, user_id: str = Depends(get_user_id)):
try:
process_id = f"sound_{random.randint(1000, 9999)}"
# Usar sem谩foro para asegurar acceso exclusivo a GPU
async with gpu_semaphore:
audio_file_path = await process_with_gpu(
generate_sound, request.prompt, process_id
)
# Verifica si el archivo se ha generado correctamente
if not os.path.exists(audio_file_path):
raise HTTPException(
status_code=404, detail="Archivo de audio no encontrado."
)
# Regresar el archivo generado como una respuesta de descarga
return FileResponse(
audio_file_path, media_type="audio/wav", filename="generated_audio.wav"
)
except HTTPException as e:
# Reenviar excepciones HTTP
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate-music/")
async def generate_music_endpoint(request: AudioRequest, user_id: str = Depends(get_user_id)):
try:
process_id = f"music_{random.randint(1000, 9999)}"
# Usar sem谩foro para asegurar acceso exclusivo a GPU
async with gpu_semaphore:
audio_file_path = await process_with_gpu(
generate_music, request.prompt, process_id
)
# Verifica si el archivo se ha generado correctamente
if not os.path.exists(audio_file_path):
raise HTTPException(
status_code=404, detail="Archivo de audio no encontrado."
)
# Regresar el archivo generado como una respuesta de descarga
return FileResponse(
audio_file_path, media_type="audio/wav", filename="generated_audio.wav"
)
except HTTPException as e:
# Reenviar excepciones HTTP
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/quota-status")
async def quota_status_endpoint(user_id: str = Depends(get_user_id)):
user_quota = quota_tracker.get_remaining_quota(user_id)
system_status = quota_tracker.get_system_status()
return {
"user_id": user_id,
"quota_remaining": user_quota,
"reset_time": quota_tracker.user_reset_times.get(user_id, None),
"system_status": system_status,
"gpu_available": torch.cuda.is_available(),
"device_info": torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CPU"
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|