Spaces:
Running
Running
File size: 1,835 Bytes
7814ee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
from audiocraft.models import AudioGen, MusicGen
from audiocraft.data.audio import audio_write
# Load the pretrained model (you can choose "small", "medium", or "large")
sound_model = AudioGen.get_pretrained('facebook/audiogen-medium')
music_model = MusicGen.get_pretrained('facebook/musicgen-small')
# Set generation parameters (for example, audio duration of 8 seconds)
sound_model.set_generation_params(duration=5)
music_model.set_generation_params(duration=5)
def generate_sound(prompt: str):
"""
Generate sound using Audiocraft based on the given prompt.
Args:
- prompt (str): The description of the sound/music to generate.
Returns:
- str: The path to the saved audio file.
"""
# Generate the audio for the provided prompt
descriptions = [prompt] # We use the prompt as a description for the model
wav = sound_model.generate(descriptions) # Generates 2 samples
# Save the generated audio file with loudness normalization
output_path = 'generated_audio'
audio_write(output_path, wav[0].cpu(), sound_model.sample_rate, strategy="loudness")
return f"{output_path}.wav"
def generate_music(prompt: str):
"""
Generate music using Audiocraft based on the given prompt.
Args:
- prompt (str): The description of the music to generate.
Returns:
- str: The path to the saved audio file.
"""
# Generate the music for the provided prompt
descriptions = [prompt] # We use the prompt as a description for the model
wav = music_model.generate(descriptions) # Generates 2 samples
# Save the generated audio file with loudness normalization
output_path = 'generated_audio'
audio_write(output_path, wav[0].cpu(), music_model.sample_rate, strategy="loudness")
return f"{output_path}.wav"
|