Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,17 +12,40 @@ from PIL import Image
|
|
12 |
from io import BytesIO
|
13 |
import tempfile
|
14 |
import sys
|
15 |
-
import subprocess
|
16 |
|
17 |
-
#############################################
|
18 |
-
# PART 1: YOUR EXISTING PLOTS & FUNCTIONALITY
|
19 |
-
#############################################
|
20 |
|
21 |
-
#
|
|
|
|
|
|
|
22 |
data_full = [
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
]
|
25 |
-
|
26 |
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag",
|
27 |
"tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
|
28 |
df_full = pd.DataFrame(data_full, columns=columns)
|
@@ -104,7 +127,7 @@ def plot_task_specific_top_models():
|
|
104 |
|
105 |
def plot_heatmap():
|
106 |
plt.figure(figsize=(14, 10))
|
107 |
-
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
|
108 |
xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
|
109 |
plt.title("Performance Heatmap", fontsize=16)
|
110 |
plt.tight_layout()
|
@@ -120,16 +143,13 @@ def plot_heatmap():
|
|
120 |
return pil_image, temp_image_file.name
|
121 |
|
122 |
def scrape_mergekit_config(model_name):
|
123 |
-
"""
|
124 |
-
Example from your code that tries to find <pre> blocks on the model page.
|
125 |
-
"""
|
126 |
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
|
127 |
response = requests.get(model_link)
|
128 |
if response.status_code != 200:
|
129 |
return f"Failed to fetch model page for {model_name}. Please check the link."
|
130 |
|
131 |
soup = BeautifulSoup(response.text, "html.parser")
|
132 |
-
yaml_config = soup.find("pre")
|
133 |
if yaml_config:
|
134 |
return yaml_config.text.strip()
|
135 |
return f"No YAML configuration found for {model_name}."
|
@@ -186,41 +206,163 @@ def download_all_data():
|
|
186 |
image_bytes.seek(0)
|
187 |
zf.writestr(filename, image_bytes.read())
|
188 |
|
189 |
-
#
|
190 |
for model_name in df_full["Model Configuration"].to_list():
|
191 |
yaml_content = scrape_mergekit_config(model_name)
|
192 |
if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
|
193 |
-
|
194 |
|
195 |
zip_buffer.seek(0)
|
196 |
return zip_buffer, "analysis_data.zip"
|
197 |
|
198 |
|
199 |
-
|
200 |
-
# PART 2:
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
def
|
204 |
"""
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
207 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
try:
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
except Exception as e:
|
214 |
-
return f"Error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
|
|
|
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
###############################
|
220 |
|
|
|
|
|
|
|
|
|
221 |
with gr.Blocks() as demo:
|
222 |
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
|
223 |
|
|
|
224 |
with gr.Row():
|
225 |
btn1 = gr.Button("Show Average Performance")
|
226 |
img1 = gr.Image(type="pil", label="Average Performance Plot")
|
@@ -245,7 +387,6 @@ with gr.Blocks() as demo:
|
|
245 |
heatmap_download = gr.File(label="Download Heatmap")
|
246 |
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
|
247 |
|
248 |
-
# Drop-down to pick a model, scrape for config
|
249 |
with gr.Row():
|
250 |
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
|
251 |
with gr.Column():
|
@@ -257,13 +398,12 @@ with gr.Blocks() as demo:
|
|
257 |
yaml_download = gr.File(label="Download MergeKit Configuration")
|
258 |
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
|
259 |
|
260 |
-
# Button to download everything (CSV + plots)
|
261 |
with gr.Row():
|
262 |
download_all_btn = gr.Button("Download Everything")
|
263 |
all_downloads = gr.File(label="Download All Data")
|
264 |
download_all_btn.click(download_all_data, outputs=all_downloads)
|
265 |
-
|
266 |
-
# Live scraping
|
267 |
gr.Markdown("## Live Scraping Features")
|
268 |
with gr.Row():
|
269 |
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
|
@@ -271,12 +411,11 @@ with gr.Blocks() as demo:
|
|
271 |
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
|
272 |
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
|
273 |
|
274 |
-
# NEW:
|
275 |
-
gr.Markdown("##
|
276 |
with gr.Row():
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
|
281 |
-
|
282 |
-
demo.launch()
|
|
|
12 |
from io import BytesIO
|
13 |
import tempfile
|
14 |
import sys
|
|
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
+
# --------------------------------------------------------------------
|
18 |
+
# PART 1: YOUR EXISTING (TINY) DATA & PLOTS
|
19 |
+
# --------------------------------------------------------------------
|
20 |
+
|
21 |
data_full = [
|
22 |
+
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
|
23 |
+
['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
|
24 |
+
['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
|
25 |
+
['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
|
26 |
+
['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
|
27 |
+
['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co/CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716],
|
28 |
+
['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659],
|
29 |
+
['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758],
|
30 |
+
['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478],
|
31 |
+
['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304],
|
32 |
+
['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524],
|
33 |
+
['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co/CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697],
|
34 |
+
['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344],
|
35 |
+
['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co/CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498],
|
36 |
+
['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712],
|
37 |
+
['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068],
|
38 |
+
['CultriX/SeQwence-14Bv1', 'https://huggingface.co/CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539],
|
39 |
+
['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572],
|
40 |
+
['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869],
|
41 |
+
['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635],
|
42 |
+
['CultriX/SeQwential-14B-v1', 'https://huggingface.co/CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626],
|
43 |
+
['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578],
|
44 |
+
['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
|
45 |
+
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
|
46 |
+
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
|
47 |
+
['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.4300, 0.7646],
|
48 |
]
|
|
|
49 |
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag",
|
50 |
"tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
|
51 |
df_full = pd.DataFrame(data_full, columns=columns)
|
|
|
127 |
|
128 |
def plot_heatmap():
|
129 |
plt.figure(figsize=(14, 10))
|
130 |
+
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
|
131 |
xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
|
132 |
plt.title("Performance Heatmap", fontsize=16)
|
133 |
plt.tight_layout()
|
|
|
143 |
return pil_image, temp_image_file.name
|
144 |
|
145 |
def scrape_mergekit_config(model_name):
|
|
|
|
|
|
|
146 |
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
|
147 |
response = requests.get(model_link)
|
148 |
if response.status_code != 200:
|
149 |
return f"Failed to fetch model page for {model_name}. Please check the link."
|
150 |
|
151 |
soup = BeautifulSoup(response.text, "html.parser")
|
152 |
+
yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
|
153 |
if yaml_config:
|
154 |
return yaml_config.text.strip()
|
155 |
return f"No YAML configuration found for {model_name}."
|
|
|
206 |
image_bytes.seek(0)
|
207 |
zf.writestr(filename, image_bytes.read())
|
208 |
|
209 |
+
# Also try scraping each model for a YAML config
|
210 |
for model_name in df_full["Model Configuration"].to_list():
|
211 |
yaml_content = scrape_mergekit_config(model_name)
|
212 |
if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
|
213 |
+
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
|
214 |
|
215 |
zip_buffer.seek(0)
|
216 |
return zip_buffer, "analysis_data.zip"
|
217 |
|
218 |
|
219 |
+
# --------------------------------------------------------------------
|
220 |
+
# PART 2: FULL "DATA START" SNIPPET (RANKS 44–105) + Parser
|
221 |
+
# --------------------------------------------------------------------
|
222 |
+
benchmark_data = [
|
223 |
+
# The entire dataset from your "DATA START", rank 44..105
|
224 |
+
# (the code you posted with "knowledge of config" or scraping logic)
|
225 |
+
{
|
226 |
+
"rank": 44,
|
227 |
+
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
|
228 |
+
"scores": {
|
229 |
+
"average": 40.10,
|
230 |
+
"IFEval": 72.57,
|
231 |
+
"BBH": 48.58,
|
232 |
+
"MATH": 34.44,
|
233 |
+
"GPQA": 17.34,
|
234 |
+
"MUSR": 19.39,
|
235 |
+
"MMLU-PRO": 48.26
|
236 |
+
},
|
237 |
+
"hf_url": "https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
|
238 |
+
"known_config": {
|
239 |
+
"models": [
|
240 |
+
{"model": "CultriX/SeQwence-14Bv1"},
|
241 |
+
{"model": "allknowingroger/Qwenslerp5-14B"}
|
242 |
+
],
|
243 |
+
"merge_method": "slerp",
|
244 |
+
"base_model": "CultriX/SeQwence-14Bv1",
|
245 |
+
"dtype": "bfloat16",
|
246 |
+
"parameters": {
|
247 |
+
"t": [0, 0.5, 1, 0.5, 0]
|
248 |
+
}
|
249 |
+
}
|
250 |
+
},
|
251 |
+
# ... rest of the snippet ...
|
252 |
+
# (Exactly copy/paste your big block from rank=44 to rank=105)
|
253 |
+
]
|
254 |
+
|
255 |
|
256 |
+
def snippet_scrape_model_page(url):
|
257 |
"""
|
258 |
+
Same as scrape_model_page, but we keep it separate for clarity.
|
259 |
+
"""
|
260 |
+
return scrape_model_page(url)
|
261 |
+
|
262 |
+
def snippet_print_benchmark_and_config_info(model_info):
|
263 |
"""
|
264 |
+
Prints an overview for each model (your "DATA START" logic),
|
265 |
+
either known config or scraping snippet.
|
266 |
+
"""
|
267 |
+
print(f"---\nModel Rank: {model_info['rank']}")
|
268 |
+
print(f"Model Name: {model_info['name']}")
|
269 |
+
print(f"Model average score across benchmarks in %: {model_info['scores']['average']}")
|
270 |
+
print(f"Models average score on IFEval benchmarks in %: {model_info['scores']['IFEval']}")
|
271 |
+
print(f"Models average score on BBH benchmarks in %: {model_info['scores']['BBH']}")
|
272 |
+
print(f"Models average score on MATH benchmarks in %: {model_info['scores']['MATH']}")
|
273 |
+
print(f"Models average score in GPQA benchmarks in %: {model_info['scores']['GPQA']}")
|
274 |
+
print(f"Models average score in MUSR benchmarks in %: {model_info['scores']['MUSR']}")
|
275 |
+
print(f"Models average score in MMLU-PRO benchmarks in %: {model_info['scores']['MMLU-PRO']}")
|
276 |
+
|
277 |
+
# If there's a known_config, print it as YAML
|
278 |
+
if model_info["known_config"] is not None:
|
279 |
+
print("###")
|
280 |
+
print("models:")
|
281 |
+
for m in model_info["known_config"]["models"]:
|
282 |
+
print(f" - model: {m['model']}")
|
283 |
+
print(f"merge_method: {model_info['known_config']['merge_method']}")
|
284 |
+
print(f"base_model: {model_info['known_config']['base_model']}")
|
285 |
+
print(f"dtype: {model_info['known_config']['dtype']}")
|
286 |
+
print("parameters:")
|
287 |
+
print(f" t: {model_info['known_config']['parameters']['t']} # V shaped curve: Hermes for input & output, WizardMath in the middle layers")
|
288 |
+
print("###")
|
289 |
+
return
|
290 |
+
|
291 |
+
# Otherwise, scrape
|
292 |
+
scraped = snippet_scrape_model_page(model_info["hf_url"])
|
293 |
+
if isinstance(scraped, str):
|
294 |
+
# Means it's an error string or something
|
295 |
+
if "Error:" in scraped:
|
296 |
+
print("(No MergeKit configuration found or error occurred.)\n")
|
297 |
+
# optionally print snippet
|
298 |
+
else:
|
299 |
+
print(scraped)
|
300 |
+
return
|
301 |
+
else:
|
302 |
+
# It's presumably a dict: { "yaml_configuration": "...", "metadata": "..." }
|
303 |
+
if ("No YAML configuration found." in scraped["yaml_configuration"]):
|
304 |
+
print("(No MergeKit configuration found.)\n")
|
305 |
+
# Print your snippet code
|
306 |
+
print("You can try the following Python script to scrape the model page:\n")
|
307 |
+
print("#" * 70)
|
308 |
+
print(f'''import requests
|
309 |
+
from bs4 import BeautifulSoup
|
310 |
+
|
311 |
+
def scrape_model_page(model_url):
|
312 |
try:
|
313 |
+
response = requests.get(model_url)
|
314 |
+
if response.status_code != 200:
|
315 |
+
return f"Error: Unable to fetch the page (Status Code: {{response.status_code}})"
|
316 |
+
|
317 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
318 |
+
|
319 |
+
yaml_config = soup.find("pre")
|
320 |
+
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
|
321 |
+
|
322 |
+
metadata_section = soup.find("div", class_="metadata")
|
323 |
+
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
324 |
+
|
325 |
+
return {{
|
326 |
+
"yaml_configuration": yaml_text,
|
327 |
+
"metadata": metadata_text
|
328 |
+
}}
|
329 |
+
|
330 |
except Exception as e:
|
331 |
+
return f"Error: {{str(e)}}"
|
332 |
+
|
333 |
+
if __name__ == "__main__":
|
334 |
+
model_url = "{model_info['hf_url']}"
|
335 |
+
result = scrape_model_page(model_url)
|
336 |
+
print(result)''')
|
337 |
+
print("#" * 70)
|
338 |
+
else:
|
339 |
+
print("###")
|
340 |
+
print(scraped["yaml_configuration"])
|
341 |
+
print("###")
|
342 |
+
|
343 |
+
def run_non_tiny_benchmarks():
|
344 |
+
"""
|
345 |
+
Captures the stdout from printing each model in benchmark_data
|
346 |
+
(ranks 44 to 105), returning a single string for Gradio to display.
|
347 |
+
"""
|
348 |
+
old_stdout = sys.stdout
|
349 |
+
buffer = io.StringIO()
|
350 |
+
sys.stdout = buffer
|
351 |
|
352 |
+
for model in benchmark_data:
|
353 |
+
snippet_print_benchmark_and_config_info(model)
|
354 |
|
355 |
+
sys.stdout = old_stdout
|
356 |
+
return buffer.getvalue()
|
|
|
357 |
|
358 |
+
|
359 |
+
# --------------------------------------------------------------------
|
360 |
+
# PART 3: GRADIO APP (Your existing UI plus the "Parse Non-Tiny" button)
|
361 |
+
# --------------------------------------------------------------------
|
362 |
with gr.Blocks() as demo:
|
363 |
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
|
364 |
|
365 |
+
# The existing UI
|
366 |
with gr.Row():
|
367 |
btn1 = gr.Button("Show Average Performance")
|
368 |
img1 = gr.Image(type="pil", label="Average Performance Plot")
|
|
|
387 |
heatmap_download = gr.File(label="Download Heatmap")
|
388 |
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
|
389 |
|
|
|
390 |
with gr.Row():
|
391 |
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
|
392 |
with gr.Column():
|
|
|
398 |
yaml_download = gr.File(label="Download MergeKit Configuration")
|
399 |
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
|
400 |
|
|
|
401 |
with gr.Row():
|
402 |
download_all_btn = gr.Button("Download Everything")
|
403 |
all_downloads = gr.File(label="Download All Data")
|
404 |
download_all_btn.click(download_all_data, outputs=all_downloads)
|
405 |
+
|
406 |
+
# Live scraping feature
|
407 |
gr.Markdown("## Live Scraping Features")
|
408 |
with gr.Row():
|
409 |
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
|
|
|
411 |
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
|
412 |
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
|
413 |
|
414 |
+
# NEW: Non-Tiny Benchmarks button
|
415 |
+
gr.Markdown("## Non-Tiny Benchmark Parser (Ranks 44–105)")
|
416 |
with gr.Row():
|
417 |
+
parse_non_tiny_btn = gr.Button("Parse Non-Tiny Benchmarks")
|
418 |
+
parse_non_tiny_output = gr.Textbox(label="Non-Tiny Benchmark Output", lines=30)
|
419 |
+
parse_non_tiny_btn.click(fn=run_non_tiny_benchmarks, outputs=parse_non_tiny_output)
|
420 |
|
421 |
+
demo.launch()
|
|