CultriX commited on
Commit
3efb770
·
verified ·
1 Parent(s): 006d441

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +178 -39
app.py CHANGED
@@ -12,17 +12,40 @@ from PIL import Image
12
  from io import BytesIO
13
  import tempfile
14
  import sys
15
- import subprocess
16
 
17
- #############################################
18
- # PART 1: YOUR EXISTING PLOTS & FUNCTIONALITY
19
- #############################################
20
 
21
- # For demonstration, assume you have a small data_full for "tiny" benchmarks:
 
 
 
22
  data_full = [
23
- # your existing data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  ]
25
-
26
  columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag",
27
  "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
28
  df_full = pd.DataFrame(data_full, columns=columns)
@@ -104,7 +127,7 @@ def plot_task_specific_top_models():
104
 
105
  def plot_heatmap():
106
  plt.figure(figsize=(14, 10))
107
- sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
108
  xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
109
  plt.title("Performance Heatmap", fontsize=16)
110
  plt.tight_layout()
@@ -120,16 +143,13 @@ def plot_heatmap():
120
  return pil_image, temp_image_file.name
121
 
122
  def scrape_mergekit_config(model_name):
123
- """
124
- Example from your code that tries to find <pre> blocks on the model page.
125
- """
126
  model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
127
  response = requests.get(model_link)
128
  if response.status_code != 200:
129
  return f"Failed to fetch model page for {model_name}. Please check the link."
130
 
131
  soup = BeautifulSoup(response.text, "html.parser")
132
- yaml_config = soup.find("pre")
133
  if yaml_config:
134
  return yaml_config.text.strip()
135
  return f"No YAML configuration found for {model_name}."
@@ -186,41 +206,163 @@ def download_all_data():
186
  image_bytes.seek(0)
187
  zf.writestr(filename, image_bytes.read())
188
 
189
- # Optionally, scrape each model for a YAML config:
190
  for model_name in df_full["Model Configuration"].to_list():
191
  yaml_content = scrape_mergekit_config(model_name)
192
  if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
193
- zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
194
 
195
  zip_buffer.seek(0)
196
  return zip_buffer, "analysis_data.zip"
197
 
198
 
199
- #############################################
200
- # PART 2: RUNNING `scrape-leaderboard.py`
201
- #############################################
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
 
203
- def run_scrape_leaderboard():
204
  """
205
- Uses Python's `subprocess` to call the external script: `scrape-leaderboard.py`
206
- capturing whatever the script prints to stdout.
 
 
 
207
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
  try:
209
- # Make sure 'scrape-leaderboard.py' is in the same folder or give the full path
210
- result = subprocess.run(["python", "scrape-leaderboard.py"], capture_output=True, text=True)
211
- # Return the combined stdout/stderr or just stdout
212
- return result.stdout if result.stdout else result.stderr
 
 
 
 
 
 
 
 
 
 
 
 
 
213
  except Exception as e:
214
- return f"Error running script: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215
 
 
 
216
 
217
- ###############################
218
- # PART 3: YOUR GRADIO INTERFACE
219
- ###############################
220
 
 
 
 
 
221
  with gr.Blocks() as demo:
222
  gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
223
 
 
224
  with gr.Row():
225
  btn1 = gr.Button("Show Average Performance")
226
  img1 = gr.Image(type="pil", label="Average Performance Plot")
@@ -245,7 +387,6 @@ with gr.Blocks() as demo:
245
  heatmap_download = gr.File(label="Download Heatmap")
246
  btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
247
 
248
- # Drop-down to pick a model, scrape for config
249
  with gr.Row():
250
  model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
251
  with gr.Column():
@@ -257,13 +398,12 @@ with gr.Blocks() as demo:
257
  yaml_download = gr.File(label="Download MergeKit Configuration")
258
  save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
259
 
260
- # Button to download everything (CSV + plots)
261
  with gr.Row():
262
  download_all_btn = gr.Button("Download Everything")
263
  all_downloads = gr.File(label="Download All Data")
264
  download_all_btn.click(download_all_data, outputs=all_downloads)
265
-
266
- # Live scraping of any model URL
267
  gr.Markdown("## Live Scraping Features")
268
  with gr.Row():
269
  url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
@@ -271,12 +411,11 @@ with gr.Blocks() as demo:
271
  live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
272
  live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
273
 
274
- # NEW: Button that runs the external script 'scrape-leaderboard.py'
275
- gr.Markdown("## Run `scrape-leaderboard.py` Externally")
276
  with gr.Row():
277
- run_script_btn = gr.Button("Run 'scrape-leaderboard.py'")
278
- run_script_output = gr.Textbox(label="Script Output", lines=25)
279
- run_script_btn.click(fn=run_scrape_leaderboard, outputs=run_script_output)
280
 
281
- # Finally, launch the app
282
- demo.launch()
 
12
  from io import BytesIO
13
  import tempfile
14
  import sys
 
15
 
 
 
 
16
 
17
+ # --------------------------------------------------------------------
18
+ # PART 1: YOUR EXISTING (TINY) DATA & PLOTS
19
+ # --------------------------------------------------------------------
20
+
21
  data_full = [
22
+ ['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
23
+ ['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
24
+ ['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
25
+ ['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
26
+ ['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
27
+ ['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co/CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716],
28
+ ['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659],
29
+ ['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758],
30
+ ['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478],
31
+ ['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304],
32
+ ['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524],
33
+ ['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co/CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697],
34
+ ['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344],
35
+ ['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co/CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498],
36
+ ['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712],
37
+ ['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068],
38
+ ['CultriX/SeQwence-14Bv1', 'https://huggingface.co/CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539],
39
+ ['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572],
40
+ ['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869],
41
+ ['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635],
42
+ ['CultriX/SeQwential-14B-v1', 'https://huggingface.co/CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626],
43
+ ['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578],
44
+ ['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
45
+ ['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
46
+ ['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
47
+ ['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.4300, 0.7646],
48
  ]
 
49
  columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag",
50
  "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
51
  df_full = pd.DataFrame(data_full, columns=columns)
 
127
 
128
  def plot_heatmap():
129
  plt.figure(figsize=(14, 10))
130
+ sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
131
  xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
132
  plt.title("Performance Heatmap", fontsize=16)
133
  plt.tight_layout()
 
143
  return pil_image, temp_image_file.name
144
 
145
  def scrape_mergekit_config(model_name):
 
 
 
146
  model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
147
  response = requests.get(model_link)
148
  if response.status_code != 200:
149
  return f"Failed to fetch model page for {model_name}. Please check the link."
150
 
151
  soup = BeautifulSoup(response.text, "html.parser")
152
+ yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
153
  if yaml_config:
154
  return yaml_config.text.strip()
155
  return f"No YAML configuration found for {model_name}."
 
206
  image_bytes.seek(0)
207
  zf.writestr(filename, image_bytes.read())
208
 
209
+ # Also try scraping each model for a YAML config
210
  for model_name in df_full["Model Configuration"].to_list():
211
  yaml_content = scrape_mergekit_config(model_name)
212
  if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
213
+ zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
214
 
215
  zip_buffer.seek(0)
216
  return zip_buffer, "analysis_data.zip"
217
 
218
 
219
+ # --------------------------------------------------------------------
220
+ # PART 2: FULL "DATA START" SNIPPET (RANKS 44–105) + Parser
221
+ # --------------------------------------------------------------------
222
+ benchmark_data = [
223
+ # The entire dataset from your "DATA START", rank 44..105
224
+ # (the code you posted with "knowledge of config" or scraping logic)
225
+ {
226
+ "rank": 44,
227
+ "name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
228
+ "scores": {
229
+ "average": 40.10,
230
+ "IFEval": 72.57,
231
+ "BBH": 48.58,
232
+ "MATH": 34.44,
233
+ "GPQA": 17.34,
234
+ "MUSR": 19.39,
235
+ "MMLU-PRO": 48.26
236
+ },
237
+ "hf_url": "https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
238
+ "known_config": {
239
+ "models": [
240
+ {"model": "CultriX/SeQwence-14Bv1"},
241
+ {"model": "allknowingroger/Qwenslerp5-14B"}
242
+ ],
243
+ "merge_method": "slerp",
244
+ "base_model": "CultriX/SeQwence-14Bv1",
245
+ "dtype": "bfloat16",
246
+ "parameters": {
247
+ "t": [0, 0.5, 1, 0.5, 0]
248
+ }
249
+ }
250
+ },
251
+ # ... rest of the snippet ...
252
+ # (Exactly copy/paste your big block from rank=44 to rank=105)
253
+ ]
254
+
255
 
256
+ def snippet_scrape_model_page(url):
257
  """
258
+ Same as scrape_model_page, but we keep it separate for clarity.
259
+ """
260
+ return scrape_model_page(url)
261
+
262
+ def snippet_print_benchmark_and_config_info(model_info):
263
  """
264
+ Prints an overview for each model (your "DATA START" logic),
265
+ either known config or scraping snippet.
266
+ """
267
+ print(f"---\nModel Rank: {model_info['rank']}")
268
+ print(f"Model Name: {model_info['name']}")
269
+ print(f"Model average score across benchmarks in %: {model_info['scores']['average']}")
270
+ print(f"Models average score on IFEval benchmarks in %: {model_info['scores']['IFEval']}")
271
+ print(f"Models average score on BBH benchmarks in %: {model_info['scores']['BBH']}")
272
+ print(f"Models average score on MATH benchmarks in %: {model_info['scores']['MATH']}")
273
+ print(f"Models average score in GPQA benchmarks in %: {model_info['scores']['GPQA']}")
274
+ print(f"Models average score in MUSR benchmarks in %: {model_info['scores']['MUSR']}")
275
+ print(f"Models average score in MMLU-PRO benchmarks in %: {model_info['scores']['MMLU-PRO']}")
276
+
277
+ # If there's a known_config, print it as YAML
278
+ if model_info["known_config"] is not None:
279
+ print("###")
280
+ print("models:")
281
+ for m in model_info["known_config"]["models"]:
282
+ print(f" - model: {m['model']}")
283
+ print(f"merge_method: {model_info['known_config']['merge_method']}")
284
+ print(f"base_model: {model_info['known_config']['base_model']}")
285
+ print(f"dtype: {model_info['known_config']['dtype']}")
286
+ print("parameters:")
287
+ print(f" t: {model_info['known_config']['parameters']['t']} # V shaped curve: Hermes for input & output, WizardMath in the middle layers")
288
+ print("###")
289
+ return
290
+
291
+ # Otherwise, scrape
292
+ scraped = snippet_scrape_model_page(model_info["hf_url"])
293
+ if isinstance(scraped, str):
294
+ # Means it's an error string or something
295
+ if "Error:" in scraped:
296
+ print("(No MergeKit configuration found or error occurred.)\n")
297
+ # optionally print snippet
298
+ else:
299
+ print(scraped)
300
+ return
301
+ else:
302
+ # It's presumably a dict: { "yaml_configuration": "...", "metadata": "..." }
303
+ if ("No YAML configuration found." in scraped["yaml_configuration"]):
304
+ print("(No MergeKit configuration found.)\n")
305
+ # Print your snippet code
306
+ print("You can try the following Python script to scrape the model page:\n")
307
+ print("#" * 70)
308
+ print(f'''import requests
309
+ from bs4 import BeautifulSoup
310
+
311
+ def scrape_model_page(model_url):
312
  try:
313
+ response = requests.get(model_url)
314
+ if response.status_code != 200:
315
+ return f"Error: Unable to fetch the page (Status Code: {{response.status_code}})"
316
+
317
+ soup = BeautifulSoup(response.text, "html.parser")
318
+
319
+ yaml_config = soup.find("pre")
320
+ yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
321
+
322
+ metadata_section = soup.find("div", class_="metadata")
323
+ metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
324
+
325
+ return {{
326
+ "yaml_configuration": yaml_text,
327
+ "metadata": metadata_text
328
+ }}
329
+
330
  except Exception as e:
331
+ return f"Error: {{str(e)}}"
332
+
333
+ if __name__ == "__main__":
334
+ model_url = "{model_info['hf_url']}"
335
+ result = scrape_model_page(model_url)
336
+ print(result)''')
337
+ print("#" * 70)
338
+ else:
339
+ print("###")
340
+ print(scraped["yaml_configuration"])
341
+ print("###")
342
+
343
+ def run_non_tiny_benchmarks():
344
+ """
345
+ Captures the stdout from printing each model in benchmark_data
346
+ (ranks 44 to 105), returning a single string for Gradio to display.
347
+ """
348
+ old_stdout = sys.stdout
349
+ buffer = io.StringIO()
350
+ sys.stdout = buffer
351
 
352
+ for model in benchmark_data:
353
+ snippet_print_benchmark_and_config_info(model)
354
 
355
+ sys.stdout = old_stdout
356
+ return buffer.getvalue()
 
357
 
358
+
359
+ # --------------------------------------------------------------------
360
+ # PART 3: GRADIO APP (Your existing UI plus the "Parse Non-Tiny" button)
361
+ # --------------------------------------------------------------------
362
  with gr.Blocks() as demo:
363
  gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
364
 
365
+ # The existing UI
366
  with gr.Row():
367
  btn1 = gr.Button("Show Average Performance")
368
  img1 = gr.Image(type="pil", label="Average Performance Plot")
 
387
  heatmap_download = gr.File(label="Download Heatmap")
388
  btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
389
 
 
390
  with gr.Row():
391
  model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
392
  with gr.Column():
 
398
  yaml_download = gr.File(label="Download MergeKit Configuration")
399
  save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
400
 
 
401
  with gr.Row():
402
  download_all_btn = gr.Button("Download Everything")
403
  all_downloads = gr.File(label="Download All Data")
404
  download_all_btn.click(download_all_data, outputs=all_downloads)
405
+
406
+ # Live scraping feature
407
  gr.Markdown("## Live Scraping Features")
408
  with gr.Row():
409
  url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
 
411
  live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
412
  live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
413
 
414
+ # NEW: Non-Tiny Benchmarks button
415
+ gr.Markdown("## Non-Tiny Benchmark Parser (Ranks 44–105)")
416
  with gr.Row():
417
+ parse_non_tiny_btn = gr.Button("Parse Non-Tiny Benchmarks")
418
+ parse_non_tiny_output = gr.Textbox(label="Non-Tiny Benchmark Output", lines=30)
419
+ parse_non_tiny_btn.click(fn=run_non_tiny_benchmarks, outputs=parse_non_tiny_output)
420
 
421
+ demo.launch()