CultriX's picture
Update app.py
0971cfa verified
raw
history blame
11.7 kB
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
import requests
from bs4 import BeautifulSoup
import io
import os
import base64
import zipfile
from PIL import Image
from io import BytesIO
import tempfile
import sys
import subprocess
#############################################
# PART 1: YOUR EXISTING PLOTS & FUNCTIONALITY
#############################################
# For demonstration, assume you have a small data_full for "tiny" benchmarks:
data_full = [
# your existing data
]
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag",
"tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
df_full = pd.DataFrame(data_full, columns=columns)
def plot_average_scores():
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
plt.figure(figsize=(14, 10))
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
plt.title("Average Performance of Models Across Tasks", fontsize=16)
plt.xlabel("Average Score", fontsize=14)
plt.ylabel("Model Configuration", fontsize=14)
plt.gca().invert_yaxis()
plt.grid(axis='x', linestyle='--', alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_task_performance():
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"],
var_name="Task", value_name="Score")
plt.figure(figsize=(16, 12))
for model in df_full["Model Configuration"]:
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
plt.title("Performance of All Models Across Tasks", fontsize=16)
plt.xlabel("Task", fontsize=14)
plt.ylabel("Score", fontsize=14)
plt.xticks(rotation=45)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_task_specific_top_models():
top_models = df_full.iloc[:, 2:].idxmax()
top_scores = df_full.iloc[:, 2:].max()
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
plt.figure(figsize=(14, 8))
plt.bar(results["Task"], results["Score"])
plt.title("Task-Specific Top Models", fontsize=16)
plt.xlabel("Task", fontsize=14)
plt.ylabel("Score", fontsize=14)
plt.grid(axis="y", linestyle="--", alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_heatmap():
plt.figure(figsize=(14, 10))
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
plt.title("Performance Heatmap", fontsize=16)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def scrape_mergekit_config(model_name):
"""
Example from your code that tries to find <pre> blocks on the model page.
"""
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
response = requests.get(model_link)
if response.status_code != 200:
return f"Failed to fetch model page for {model_name}. Please check the link."
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
if yaml_config:
return yaml_config.text.strip()
return f"No YAML configuration found for {model_name}."
def download_yaml(yaml_content, model_name):
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
return None
filename = f"{model_name.replace('/', '_')}_config.yaml"
return gr.File(value=yaml_content.encode(), filename=filename)
def scrape_model_page(model_url):
try:
response = requests.get(model_url)
if response.status_code != 200:
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
metadata_section = soup.find("div", class_="metadata")
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
except Exception as e:
return f"Error: {str(e)}"
def display_scraped_model_data(model_url):
return scrape_model_page(model_url)
def download_all_data():
import io
csv_buffer = io.StringIO()
df_full.to_csv(csv_buffer, index=False)
csv_data = csv_buffer.getvalue().encode('utf-8')
average_plot_pil, average_plot_name = plot_average_scores()
task_plot_pil, task_plot_name = plot_task_performance()
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
heatmap_plot_pil, heatmap_plot_name = plot_heatmap()
plot_dict = {
"average_performance": (average_plot_pil, average_plot_name),
"task_performance": (task_plot_pil, task_plot_name),
"top_models": (top_models_plot_pil, top_models_plot_name),
"heatmap": (heatmap_plot_pil, heatmap_plot_name)
}
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w') as zf:
zf.writestr("model_scores.csv", csv_data)
for name, (pil_image, filename) in plot_dict.items():
image_bytes = io.BytesIO()
pil_image.save(image_bytes, format='PNG')
image_bytes.seek(0)
zf.writestr(filename, image_bytes.read())
# Optionally, scrape each model for a YAML config:
for model_name in df_full["Model Configuration"].to_list():
yaml_content = scrape_mergekit_config(model_name)
if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
zip_buffer.seek(0)
return zip_buffer, "analysis_data.zip"
#############################################
# PART 2: RUNNING `scrape-leaderboard.py`
#############################################
def run_scrape_leaderboard():
"""
Uses Python's `subprocess` to call the external script: `scrape-leaderboard.py`
capturing whatever the script prints to stdout.
"""
try:
# Make sure 'scrape-leaderboard.py' is in the same folder or give the full path
result = subprocess.run(["python", "scrape-leaderboard.py"], capture_output=True, text=True)
# Return the combined stdout/stderr or just stdout
return result.stdout if result.stdout else result.stderr
except Exception as e:
return f"Error running script: {str(e)}"
###############################
# PART 3: YOUR GRADIO INTERFACE
###############################
with gr.Blocks() as demo:
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
with gr.Row():
btn1 = gr.Button("Show Average Performance")
img1 = gr.Image(type="pil", label="Average Performance Plot")
img1_download = gr.File(label="Download Average Performance")
btn1.click(plot_average_scores, outputs=[img1, img1_download])
with gr.Row():
btn2 = gr.Button("Show Task Performance")
img2 = gr.Image(type="pil", label="Task Performance Plot")
img2_download = gr.File(label="Download Task Performance")
btn2.click(plot_task_performance, outputs=[img2, img2_download])
with gr.Row():
btn3 = gr.Button("Task-Specific Top Models")
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
img3_download = gr.File(label="Download Top Models")
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
with gr.Row():
btn4 = gr.Button("Plot Performance Heatmap")
heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
heatmap_download = gr.File(label="Download Heatmap")
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
# Drop-down to pick a model, scrape for config
with gr.Row():
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
with gr.Column():
scrape_btn = gr.Button("Scrape MergeKit Configuration")
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
with gr.Column():
save_yaml_btn = gr.Button("Save MergeKit Configuration")
yaml_download = gr.File(label="Download MergeKit Configuration")
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
# Button to download everything (CSV + plots)
with gr.Row():
download_all_btn = gr.Button("Download Everything")
all_downloads = gr.File(label="Download All Data")
download_all_btn.click(download_all_data, outputs=all_downloads)
# Live scraping of any model URL
gr.Markdown("## Live Scraping Features")
with gr.Row():
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
live_scrape_btn = gr.Button("Scrape Model Page")
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
# NEW: Button that runs the external script 'scrape-leaderboard.py'
gr.Markdown("## Run `scrape-leaderboard.py` Externally")
with gr.Row():
run_script_btn = gr.Button("Run 'scrape-leaderboard.py'")
run_script_output = gr.Textbox(label="Script Output", lines=25)
run_script_btn.click(fn=run_scrape_leaderboard, outputs=run_script_output)
# Finally, launch the app
demo.launch()