File size: 4,485 Bytes
17aa8f3
982fdda
bdbadad
90cb3d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdbadad
 
 
 
90cb3d2
bdbadad
 
 
 
 
90cb3d2
 
 
982fdda
bdbadad
 
90cb3d2
bdbadad
 
 
 
90cb3d2
bdbadad
 
 
 
982fdda
bdbadad
 
90cb3d2
 
bdbadad
90cb3d2
 
bdbadad
 
 
90cb3d2
 
bdbadad
 
 
90cb3d2
 
bdbadad
 
 
90cb3d2
 
bdbadad
 
 
90cb3d2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr

# Input data
data_full = [
    ["CultriX/Qwen2.5-14B-SLERPv7", 0.7205, 0.8272, 0.7541, 0.6581, 0.5000, 0.7290],
    ["djuna/Q2.5-Veltha-14B-0.5", 0.7492, 0.8386, 0.7305, 0.5980, 0.4300, 0.7817],
    ["CultriX/Qwen2.5-14B-FinalMerge", 0.7248, 0.8277, 0.7113, 0.7052, 0.5700, 0.7001],
    ["CultriX/Qwen2.5-14B-MultiCultyv2", 0.7295, 0.8359, 0.7363, 0.5767, 0.4400, 0.7316],
    ["CultriX/Qwen2.5-14B-Brocav7", 0.7445, 0.8353, 0.7508, 0.6292, 0.4600, 0.7629],
    ["CultriX/Qwen2.5-14B-Broca", 0.7456, 0.8352, 0.7480, 0.6034, 0.4400, 0.7716],
    ["CultriX/Qwen2.5-14B-Brocav3", 0.7395, 0.8388, 0.7393, 0.6405, 0.4700, 0.7659],
    ["CultriX/Qwen2.5-14B-Brocav4", 0.7432, 0.8377, 0.7444, 0.6277, 0.4800, 0.7580],
    ["CultriX/Qwen2.5-14B-Brocav2", 0.7492, 0.8302, 0.7508, 0.6377, 0.5100, 0.7478],
    ["CultriX/Qwen2.5-14B-Brocav5", 0.7445, 0.8313, 0.7547, 0.6376, 0.5000, 0.7304],
    ["CultriX/Qwen2.5-14B-Brocav6", 0.7179, 0.8354, 0.7531, 0.6378, 0.4900, 0.7524],
    ["CultriX/Qwenfinity-2.5-14B", 0.7347, 0.8254, 0.7279, 0.7267, 0.5600, 0.6970],
    ["CultriX/Qwen2.5-14B-Emergedv2", 0.7137, 0.8335, 0.7363, 0.5836, 0.4400, 0.7344],
    ["CultriX/Qwen2.5-14B-Unity", 0.7063, 0.8343, 0.7423, 0.6820, 0.5700, 0.7498],
    ["CultriX/Qwen2.5-14B-MultiCultyv3", 0.7132, 0.8216, 0.7395, 0.6792, 0.5500, 0.7120],
    ["CultriX/Qwen2.5-14B-Emergedv3", 0.7436, 0.8312, 0.7519, 0.6585, 0.5500, 0.7068],
    ["CultriX/SeQwence-14Bv1", 0.7278, 0.8410, 0.7541, 0.6816, 0.5200, 0.7539],
    ["CultriX/Qwen2.5-14B-Wernickev2", 0.7391, 0.8168, 0.7273, 0.6220, 0.4500, 0.7572],
    ["CultriX/Qwen2.5-14B-Wernickev3", 0.7357, 0.8148, 0.7245, 0.7023, 0.5500, 0.7869],
    ["CultriX/Qwen2.5-14B-Wernickev4", 0.7355, 0.8290, 0.7497, 0.6306, 0.4800, 0.7635],
    ["CultriX/SeQwential-14B-v1", 0.7355, 0.8205, 0.7549, 0.6367, 0.4800, 0.7626],
    ["CultriX/Qwen2.5-14B-Wernickev5", 0.7224, 0.8272, 0.7541, 0.6790, 0.5100, 0.7578],
    ["CultriX/Qwen2.5-14B-Wernickev6", 0.6994, 0.7549, 0.5816, 0.6991, 0.5800, 0.7267],
    ["CultriX/Qwen2.5-14B-Wernickev7", 0.7147, 0.7599, 0.6097, 0.7056, 0.5700, 0.7164],
    ["CultriX/Qwen2.5-14B-FinalMerge-tmp2", 0.7255, 0.8192, 0.7535, 0.6671, 0.5000, 0.7612],
]

columns = ["Model Configuration", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]

# Convert to DataFrame
df_full = pd.DataFrame(data_full, columns=columns)

def summary_statistics():
    stats = df_full.iloc[:, 1:].describe().T  # Summary stats for each task
    stats['Std Dev'] = df_full.iloc[:, 1:].std(axis=0)
    return stats.reset_index()

def plot_distribution_boxplots():
    plt.figure(figsize=(14, 8))
    df_melted = df_full.melt(id_vars="Model Configuration", var_name="Task", value_name="Score")
    sns.boxplot(x="Task", y="Score", data=df_melted)
    plt.title("Score Distribution by Task", fontsize=16)
    plt.xlabel("Task", fontsize=14)
    plt.ylabel("Score", fontsize=14)
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    plt.tight_layout()
    plt.savefig("distribution_boxplots.png")
    return "distribution_boxplots.png"

def best_overall_model():
    df_full["Average Score"] = df_full.iloc[:, 1:].mean(axis=1)
    best_model = df_full.loc[df_full["Average Score"].idxmax()]
    return best_model

def plot_heatmap():
    plt.figure(figsize=(12, 8))
    sns.heatmap(df_full.iloc[:, 1:], annot=True, cmap="YlGnBu", xticklabels=columns[1:], yticklabels=df_full["Model Configuration"])
    plt.title("Performance Heatmap", fontsize=16)
    plt.tight_layout()
    plt.savefig("performance_heatmap.png")
    return "performance_heatmap.png"

with gr.Blocks() as demo:
    gr.Markdown("# Enhanced Model Performance Analysis")

    with gr.Row():
        btn1 = gr.Button("Show Summary Statistics")
        stats_output = gr.Dataframe()
        btn1.click(summary_statistics, outputs=stats_output)

    with gr.Row():
        btn2 = gr.Button("Plot Score Distributions")
        dist_img = gr.Image(type="filepath")
        btn2.click(plot_distribution_boxplots, outputs=dist_img)

    with gr.Row():
        btn3 = gr.Button("Best Overall Model")
        best_output = gr.Textbox()
        btn3.click(best_overall_model, outputs=best_output)

    with gr.Row():
        btn4 = gr.Button("Plot Performance Heatmap")
        heatmap_img = gr.Image(type="filepath")
        btn4.click(plot_heatmap, outputs=heatmap_img)

demo.launch()