File size: 8,010 Bytes
982fdda
17aa8f3
982fdda
 
17aa8f3
38e1340
982fdda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b7eb30
982fdda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17aa8f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
982fdda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e1340
982fdda
 
 
 
 
 
 
 
38e1340
982fdda
 
 
 
 
 
 
 
 
 
 
b8253d2
17aa8f3
 
982fdda
144fe6c
 
b8253d2
 
 
 
 
 
 
 
6f821b5
b8253d2
 
 
 
 
 
 
 
 
 
7b7eb30
 
03bdf6c
 
7b7eb30
b8253d2
 
 
 
 
 
03bdf6c
 
7b7eb30
b8253d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objs as go
import plotly.io as pio
from io import StringIO
import base64

# Read the data from the file
def parse_data(file_content):
    lines = file_content.splitlines()

    model_data = []
    current_model = None

    for line in lines:
        line = line.strip()
        if line.startswith('hf (pretrained='):
            current_model = line.split('pretrained=')[1].split(',')[0]
        elif line and current_model:
            if '|' in line:
                # Parse table row
                parts = [p.strip() for p in line.split('|')]
                if len(parts) >= 2:  # Ensure the correct number of columns
                    try:
                        task_name = parts[0]
                        value = float(parts[1])  # Extract the numeric value
                        model_data.append([
                            current_model,
                            task_name,  # Task name
                            value
                        ])
                    except ValueError:
                        print(f"Skipping row due to invalid value: {parts}")
    if not model_data:
        print("No valid data found in the file.")
    return pd.DataFrame(model_data, columns=['Model', 'Task', 'Value'])

# Calculate average performance
def calculate_averages(data):
    if data.empty:
        print("No data available to calculate averages.")
        return pd.DataFrame(columns=['Model', 'Average Performance'])
    return data.groupby('Model')['Value'].mean().reset_index().rename(columns={'Value': 'Average Performance'})

def create_bar_chart(df, category):
    """Create a horizontal bar chart for the specified category."""
    sorted_df = df[['Model', category]].sort_values(by=category, ascending=True)
    fig = go.Figure(go.Bar(
        x=sorted_df[category],
        y=sorted_df['Model'],
        orientation='h',
        marker=dict(color=sorted_df[category], colorscale='Viridis'),
        hoverinfo='x+y',
        text=sorted_df[category],
        textposition='auto'
    ))
    fig.update_layout(
        margin=dict(l=20, r=20, t=20, b=20),
        title=f"Leaderboard for {category} Scores"
    )
    return fig

def generate_visualizations(data, averages):
    sns.set(style='whitegrid')
    
    if averages.empty:
        print("No averages to visualize.")
        return None, None, None, None, None, None
    
    averages = averages.sort_values(by='Average Performance')
    
    # Matplotlib average performance plot
    plt.figure(figsize=(12, 8))
    sns.barplot(data=averages, x='Average Performance', y='Model', palette='viridis')
    plt.title('Average Performance of Models', fontsize=16)
    plt.xlabel('Average Performance', fontsize=12)
    plt.ylabel('Model', fontsize=12)
    plt.tight_layout()
    
    # Save the plot to a buffer
    buffer_avg = StringIO()
    plt.savefig(buffer_avg, format='png')
    buffer_avg.seek(0)
    image_avg = base64.b64encode(buffer_avg.read()).decode('utf-8')
    plt.close()
    
    # Line plot for task performance by model
    sorted_models = averages['Model'].tolist()
    data['Model'] = pd.Categorical(data['Model'], categories=sorted_models, ordered=True)
    data = data.sort_values(by=['Model', 'Task'])

    if data.empty:
        print("No data available for line plot.")
        return image_avg, None, None, None, None, None
    
    plt.figure(figsize=(14, 10))
    sns.lineplot(data=data, x='Task', y='Value', hue='Model', marker='o')
    plt.title('Task Performance by Model', fontsize=16)
    plt.xlabel('Task', fontsize=12)
    plt.ylabel('Performance', fontsize=12)
    plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', title='Model')
    plt.xticks(rotation=45)
    plt.tight_layout()
    
    # Save the line plot to a buffer
    buffer_line = StringIO()
    plt.savefig(buffer_line, format='png')
    buffer_line.seek(0)
    image_line = base64.b64encode(buffer_line.read()).decode('utf-8')
    plt.close()

    # Heatmap of task performance
    pivot_table = data.pivot_table(index='Task', columns='Model', values='Value')
    plt.figure(figsize=(12, 10))
    sns.heatmap(pivot_table, annot=True, fmt=".2f", cmap="coolwarm", cbar=True)
    plt.title('Task Performance Heatmap', fontsize=16)
    plt.xlabel('Model', fontsize=12)
    plt.ylabel('Task', fontsize=12)
    plt.tight_layout()
    
    # Save the heatmap to a buffer
    buffer_heatmap = StringIO()
    plt.savefig(buffer_heatmap, format='png')
    buffer_heatmap.seek(0)
    image_heatmap = base64.b64encode(buffer_heatmap.read()).decode('utf-8')
    plt.close()
    
    # Boxplot of performance distribution per model
    plt.figure(figsize=(12, 8))
    sns.boxplot(data=data, x='Model', y='Value', palette='Set2')
    plt.title('Performance Distribution per Model', fontsize=16)
    plt.xlabel('Model', fontsize=12)
    plt.ylabel('Performance', fontsize=12)
    plt.xticks(rotation=45)
    plt.tight_layout()
    
    # Save the boxplot to a buffer
    buffer_boxplot = StringIO()
    plt.savefig(buffer_boxplot, format='png')
    buffer_boxplot.seek(0)
    image_boxplot = base64.b64encode(buffer_boxplot.read()).decode('utf-8')
    plt.close()
    
    # Create plotly bar charts
    fig1 = create_bar_chart(averages, 'Average Performance')
    plotly_avg = pio.to_html(fig1, full_html=False)
    
    plotly_tasks = {}
    # Assuming you have tasks in the dataframe and want to display it
    tasks = data['Task'].unique()
    for task in tasks:
        task_data = data[data['Task'] == task]
        fig2 = create_bar_chart(task_data, 'Value')
        fig2.update_layout(title=f"Leaderboard for {task} Scores")
        plotly_tasks[task] = pio.to_html(fig2, full_html=False)
    
    return image_avg, image_line, image_heatmap, image_boxplot, plotly_avg, plotly_tasks

def process_and_visualize(file_content):
    data = parse_data(file_content)
    averages = calculate_averages(data)
    
    image_avg, image_line, image_heatmap, image_boxplot, plotly_avg, plotly_tasks = generate_visualizations(data, averages)
    
    output_text = f"Average Performance per Model:\n{averages.sort_values(by='Average Performance').to_string()}"
        
    return output_text, image_avg, image_line, image_heatmap, image_boxplot, plotly_avg, plotly_tasks

if __name__ == "__main__":
    
    task_names = ['tinyArc', 'tinyHellaswag', 'tinyMMLU', 'tinyTruthfulQA', 'tinyTruthfulQA_mc1', 'tinyWinogrande']
    
    with gr.Blocks(title="LLM Benchmark Visualizer") as demo:
        gr.Markdown("Upload your LLM benchmark data and visualize the results.")
        
        with gr.Row():
           input_text = gr.Textbox(lines=10, label="Paste your data here")
            
        with gr.Row():
             output_text = gr.Textbox(label="Average Performance per Model")

        with gr.Row():
            with gr.Column():
                image_avg = gr.Image(label="Matplotlib Average Performance Chart")
                image_line = gr.Image(label="Matplotlib Task Performance Line Chart")
            with gr.Column():
                 image_heatmap = gr.Image(label="Matplotlib Task Performance Heatmap")
                 image_boxplot = gr.Image(label="Matplotlib Performance Distribution Boxplot")
        with gr.Row():
              plotly_avg = gr.HTML(label="Plotly Average Performance Chart")
       
        task_tabs = gr.TabbedInterface([])

        def update_tabs(file_content):
            _, _, _, _, _, _, plotly_tasks = process_and_visualize(file_content)
            return [gr.HTML(value=html, label=task) for task, html in plotly_tasks.items()]

        input_text.change(
            fn=process_and_visualize,
            inputs=input_text,
            outputs=[output_text, image_avg, image_line, image_heatmap, image_boxplot, plotly_avg],
        )
        
        input_text.change(fn=update_tabs, inputs=input_text, outputs=[task_tabs])
            
    demo.launch(share=True)