Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,28 +6,18 @@ from threading import Thread
|
|
6 |
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
7 |
from PIL import ImageDraw
|
8 |
from torchvision.transforms.v2 import Resize
|
9 |
-
|
10 |
import subprocess
|
11 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
|
13 |
-
|
14 |
-
"vikhyatk/moondream2",
|
15 |
-
revision="2025-01-09",
|
16 |
-
trust_remote_code=True,
|
17 |
-
device_map={"": "cuda"},
|
18 |
-
#attn_implementation="flash_attention_2"
|
19 |
-
)
|
20 |
|
21 |
-
'''
|
22 |
model_id = "vikhyatk/moondream2"
|
23 |
-
revision = "
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
25 |
moondream = AutoModelForCausalLM.from_pretrained(
|
26 |
model_id, trust_remote_code=True, revision=revision,
|
27 |
torch_dtype=torch.bfloat16, device_map={"": "cuda"},
|
28 |
attn_implementation="flash_attention_2"
|
29 |
)
|
30 |
-
'''
|
31 |
|
32 |
moondream.eval()
|
33 |
|
@@ -35,26 +25,25 @@ moondream.eval()
|
|
35 |
def answer_questions(image_tuples, prompt_text):
|
36 |
result = ""
|
37 |
Q_and_A = ""
|
38 |
-
prompts = [p.strip() for p in prompt_text.split(',')]
|
39 |
image_embeds = [img[0] for img in image_tuples if img[0] is not None]
|
40 |
answers = []
|
41 |
-
|
42 |
for prompt in prompts:
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
for i, prompt in enumerate(prompts):
|
51 |
Q_and_A += f"### Q: {prompt}\n"
|
52 |
for j, image_tuple in enumerate(image_tuples):
|
53 |
image_name = f"image{j+1}"
|
54 |
-
answer_text = answers[i][j]
|
55 |
Q_and_A += f"**{image_name} A:** \n {answer_text} \n"
|
56 |
|
57 |
-
result = {'headers': prompts, 'data': answers}
|
58 |
print("result\n{}\n\nQ_and_A\n{}\n\n".format(result, Q_and_A))
|
59 |
return Q_and_A, result
|
60 |
|
|
|
6 |
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
7 |
from PIL import ImageDraw
|
8 |
from torchvision.transforms.v2 import Resize
|
|
|
9 |
import subprocess
|
|
|
10 |
|
11 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
13 |
model_id = "vikhyatk/moondream2"
|
14 |
+
revision = "2025-01-09"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
16 |
moondream = AutoModelForCausalLM.from_pretrained(
|
17 |
model_id, trust_remote_code=True, revision=revision,
|
18 |
torch_dtype=torch.bfloat16, device_map={"": "cuda"},
|
19 |
attn_implementation="flash_attention_2"
|
20 |
)
|
|
|
21 |
|
22 |
moondream.eval()
|
23 |
|
|
|
25 |
def answer_questions(image_tuples, prompt_text):
|
26 |
result = ""
|
27 |
Q_and_A = ""
|
28 |
+
prompts = [p.strip() for p in prompt_text.split(',')]
|
29 |
image_embeds = [img[0] for img in image_tuples if img[0] is not None]
|
30 |
answers = []
|
31 |
+
|
32 |
for prompt in prompts:
|
33 |
+
answers.append(moondream.batch_answer(
|
34 |
+
images=[img.convert("RGB") for img in image_embeds],
|
35 |
+
prompts=[prompt] * len(image_embeds),
|
36 |
+
tokenizer=tokenizer
|
37 |
+
))
|
38 |
+
|
|
|
39 |
for i, prompt in enumerate(prompts):
|
40 |
Q_and_A += f"### Q: {prompt}\n"
|
41 |
for j, image_tuple in enumerate(image_tuples):
|
42 |
image_name = f"image{j+1}"
|
43 |
+
answer_text = answers[i][j]
|
44 |
Q_and_A += f"**{image_name} A:** \n {answer_text} \n"
|
45 |
|
46 |
+
result = {'headers': prompts, 'data': answers}
|
47 |
print("result\n{}\n\nQ_and_A\n{}\n\n".format(result, Q_and_A))
|
48 |
return Q_and_A, result
|
49 |
|