Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,596 Bytes
3a16411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import spaces
import torch
import re
import gradio as gr
from threading import Thread
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
from PIL import ImageDraw
from torchvision.transforms.v2 import Resize
import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
#subprocess.run('cp -r moondream/torch clients/python/moondream/torch')
#subprocess.run('pip install moondream[gpu]')
#def load_moondream():
# """Load Moondream model and tokenizer."""
# model = AutoModelForCausalLM.from_pretrained(
# "vikhyatk/moondream2", trust_remote_code=True, device_map={"": "cuda"}
# )
# tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
# return model, tokenizer
"""Load Moondream model and tokenizer."""
moondream = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream2", trust_remote_code=True, device_map={"": "cuda"}
)
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
#model_id = "vikhyatk/moondream2"
#revision = "2025-01-09"
#tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
#moondream = AutoModelForCausalLM.from_pretrained(
# model_id, trust_remote_code=True, revision=revision,
# torch_dtype=torch.bfloat16, device_map={"": "cuda"},
#)
#moondream.eval()
@spaces.GPU(durtion="150")
def answer_questions(image_tuples, prompt_text):
result = ""
Q_and_A = ""
prompts = [p.strip() for p in prompt_text.split('?')]
image_embeds = [img[0] for img in image_tuples if img[0] is not None]
answers = []
for prompt in prompts:
answers.append(moondream.batch_answer(
images=[img.convert("RGB") for img in image_embeds],
prompts=[prompt] * len(image_embeds),
tokenizer=tokenizer
))
for i, prompt in enumerate(prompts):
Q_and_A += f"### Q: {prompt}\n"
for j, image_tuple in enumerate(image_tuples):
image_name = f"image{j+1}"
answer_text = answers[i][j]
Q_and_A += f"**{image_name} A:** \n {answer_text} \n"
result = {'headers': prompts, 'data': answers}
#print("result\n{}\n\nQ_and_A\n{}\n\n".format(result, Q_and_A))
return Q_and_A, result
with gr.Blocks() as demo:
gr.Markdown("# moondream2 unofficial batch processing demo")
gr.Markdown("1. Select images\n2. Enter one or more prompts separated by commas. Ex: Describe this image, What is in this image?\n\n")
gr.Markdown("**Currently each image will be sent as a batch with the prompts thus asking each prompt on each image**")
gr.Markdown("*Running on free CPU space tier currently so results may take a bit to process compared to duplicating space and using GPU space hardware*")
gr.Markdown("A tiny vision language model. [moondream2](https://huggingface.co/vikhyatk/moondream2)")
with gr.Row():
img = gr.Gallery(label="Upload Images", type="pil", preview=True, columns=4)
with gr.Row():
prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by question marks. Ex: Describe this image? What is in this image?", lines=8)
with gr.Row():
submit = gr.Button("Submit")
with gr.Row():
output = gr.Markdown(label="Questions and Answers", line_breaks=True)
with gr.Row():
output2 = gr.Dataframe(label="Structured Dataframe", type="array", wrap=True)
submit.click(answer_questions, inputs=[img, prompt], outputs=[output, output2])
demo.queue().launch()
|