File size: 19,385 Bytes
80f4262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import gradio as gr
from gradio.themes.utils import fonts
import json
import random
import subprocess
import sys
from pathlib import Path
import requests
import os

# CRITICAL: Enable MCP server mode (as per GRADIO_MCP_HF_SPACES_GUIDE.md)
os.environ["GRADIO_MCP_SERVER"] = "True"

# Import MCP tools from mcp_tools.py to make them available for the MCP server
try:
    from mcp_tools import (
        setup_package,
        generate_theme,
        convert_css_to_theme,
        generate_app_code,
    )

    print("βœ… MCP tools imported successfully")
except ImportError as e:
    print(f"⚠️ Could not import MCP tools: {e}")

# New imports for HuggingFace Inference API
try:
    import requests

    HF_REQUESTS_AVAILABLE = True
    print("βœ… HuggingFace Inference API available")
except ImportError:
    HF_REQUESTS_AVAILABLE = False
    print("⚠️ requests library not available")

try:
    from gradio_themer import GradioThemer

    THEMER_AVAILABLE = True
    print("βœ… Using renamed GradioThemer package (gradio_themer-0.1.0)")
except ImportError:
    print("⚠️ GradioThemer not available, themes will not work")
    THEMER_AVAILABLE = False

# Model API configuration
# Available models for both HF Zero and Nebius inference
AVAILABLE_MODELS = {
    "qwen": {
        "hf_model": "Qwen/Qwen2.5-Coder-7B",
        "nebius_model": "Qwen/Qwen2.5-Coder-7B",
        "name": "Qwen2.5-Coder-7B",
    },
    "llama": {
        "hf_model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
        "nebius_model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
        "name": "Meta-Llama-3.1-8B-Instruct",
    },
}

# Nebius Studio API configuration
NEBIUS_API_URL = "https://api.studio.nebius.ai/v1/chat/completions"


def query_ai_api(prompt, user_token=None, model_choice="qwen"):
    """Query AI API - Use Nebius if token provided, otherwise HF Zero inference"""

    model_config = AVAILABLE_MODELS.get(model_choice, AVAILABLE_MODELS["qwen"])

    if user_token and user_token.strip():
        # Use Nebius Studio API with provided token
        headers = {
            "Authorization": f"Bearer {user_token.strip()}",
            "Content-Type": "application/json",
        }

        payload = {
            "model": model_config["nebius_model"],
            "messages": [{"role": "user", "content": prompt}],
            "max_tokens": 1000,
            "temperature": 0.3,
            "top_p": 0.9,
        }

        response = requests.post(NEBIUS_API_URL, headers=headers, json=payload)
        return response.json()

    else:
        # Use HuggingFace Zero Inference API (no token required)
        hf_inference_url = (
            f"https://api-inference.huggingface.co/models/{model_config['hf_model']}"
        )

        headers = {"Content-Type": "application/json"}

        payload = {
            "inputs": prompt,
            "parameters": {
                "max_new_tokens": 1000,
                "temperature": 0.3,
                "top_p": 0.9,
                "do_sample": True,
                "return_full_text": False,
            },
        }

        response = requests.post(hf_inference_url, headers=headers, json=payload)
        return response.json()


def convert_css_to_theme_json_ai(input_text, user_token="", model_choice="qwen"):
    # Internal UI function - not for MCP discovery
    if not input_text.strip():
        return "Please provide CSS code or describe your desired style."

    if not HF_REQUESTS_AVAILABLE:
        return "❌ requests library is required for API calls. Please install with: pip install requests"

    try:
        # Create the prompt with schema definition
        SCHEMA = """{
  "themes": {
    "generated_theme": {
      "name": "Generated Theme",
      "colors": {
        "base-100": "#ffffff",
        "base-200": "#f8fafc", 
        "base-300": "#e2e8f0",
        "base-content": "#1e293b",
        "primary": "#3b82f6",
        "primary-content": "#ffffff",
        "secondary": "#64748b",
        "secondary-content": "#ffffff",
        "accent": "#f59e0b",
        "accent-content": "#000000",
        "neutral": "#374151",
        "neutral-content": "#ffffff",
        "error": "#ef4444",
        "error-content": "#ffffff"
      },
      "background": "#f1f5f9",
      "font": {
        "family": "Inter",
        "type": "google_font",
        "name": "Inter"
      }
    }
  }
}"""

        ALPACA_PROMPT = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Convert the provided CSS code or style description into a JSON theme configuration that follows the exact schema structure. Extract colors from CSS variables, class names, or generate appropriate colors based on the description. Return ONLY valid JSON that matches the schema format.

Expected JSON Schema:
{schema}

### Input:
{input_text}

### Response:
"""

        prompt = ALPACA_PROMPT.format(schema=SCHEMA, input_text=input_text)

        model_name = AVAILABLE_MODELS[model_choice]["name"]
        api_type = "Nebius" if user_token and user_token.strip() else "HuggingFace Zero"
        print(f"πŸ€– Generating theme with {model_name} via {api_type}...")

        try:
            result = query_ai_api(prompt, user_token, model_choice)

            # Handle different response formats
            generated_text = ""

            if user_token and user_token.strip():
                # Handle Nebius API response (OpenAI format)
                if isinstance(result, dict):
                    if "error" in result or "detail" in result:
                        error_msg = result.get(
                            "error", result.get("detail", "Unknown error")
                        )
                        if (
                            "authentication" in str(error_msg).lower()
                            or "unauthorized" in str(error_msg).lower()
                            or "invalid authentication token" in str(error_msg).lower()
                        ):
                            return "❌ Invalid Nebius API token provided. Please check your Nebius API key and try again."
                        else:
                            return f"❌ Nebius API error: {error_msg}"
                    elif "choices" in result and len(result["choices"]) > 0:
                        generated_text = (
                            result["choices"][0].get("message", {}).get("content", "")
                        )
                    else:
                        return "❌ Unexpected Nebius API response format"
                else:
                    return "❌ Unexpected Nebius API response format"
            else:
                # Handle HuggingFace API response
                if isinstance(result, list) and len(result) > 0:
                    generated_text = result[0].get("generated_text", "")
                elif isinstance(result, dict):
                    if "error" in result:
                        if "loading" in str(result["error"]).lower():
                            return "⏳ Model is loading on HuggingFace. Please try again in a few moments."
                        return f"❌ HuggingFace API error: {result['error']}"
                    else:
                        generated_text = result.get("generated_text", "")

            if not generated_text.strip():
                return "❌ No response received from AI model. Please try again."

            # Try to extract JSON from the response
            try:
                # Look for JSON in the response
                start_idx = generated_text.find("{")
                if start_idx == -1:
                    return f"❌ No valid JSON found in response:\n\n{generated_text}"

                # Find the matching closing brace
                brace_count = 0
                end_idx = -1
                for i in range(start_idx, len(generated_text)):
                    if generated_text[i] == "{":
                        brace_count += 1
                    elif generated_text[i] == "}":
                        brace_count -= 1
                        if brace_count == 0:
                            end_idx = i + 1
                            break

                if end_idx == -1:
                    return f"❌ Incomplete JSON in response:\n\n{generated_text}"

                json_str = generated_text[start_idx:end_idx]

                # Validate JSON
                parsed_json = json.loads(json_str)

                # Pretty format the JSON
                formatted_json = json.dumps(parsed_json, indent=2)

                return formatted_json

            except json.JSONDecodeError as e:
                return f"❌ Invalid JSON generated:\n\nJSON Error: {str(e)}\n\nRaw Response:\n{generated_text}"

        except requests.exceptions.RequestException as e:
            return f"❌ Network error: {str(e)}"
        except Exception as e:
            return f"❌ Unexpected error during AI processing: {str(e)}"

    except Exception as e:
        return f"❌ Error: {str(e)}"


def apply_random_theme():
    # Internal UI function - not for MCP discovery
    # Load the actual theme data to get all available themes
    themes_file = Path(__file__).parent / "user_themes.json"

    try:
        with open(themes_file, "r", encoding="utf-8") as f:
            theme_data = json.load(f)

        if not theme_data.get("themes"):
            return (
                {"currentTheme": "default", "type": "builtin"},
                "❌ No themes found in user_themes.json",
            )

        # Get all available theme keys
        theme_keys = list(theme_data["themes"].keys())
        if not theme_keys:
            return (
                {"currentTheme": "default", "type": "builtin"},
                "❌ No themes available",
            )

        # Select a random theme
        random_theme_key = random.choice(theme_keys)
        random_theme = theme_data["themes"][random_theme_key]

        print(f"🎲 Randomly selected theme: {random_theme_key}")

        # Update the component state
        new_state = {
            "currentTheme": random_theme_key,
            "type": "custom",
            "themeConfig": random_theme,
            "font": random_theme.get("font", {"family": "Inter", "weights": ["400"]}),
            "removeBorders": True,
        }

        return (
            new_state,
            f"βœ… Applied random theme: {random_theme.get('name', random_theme_key)}",
        )

    except FileNotFoundError:
        return (
            {"currentTheme": "default", "type": "builtin"},
            "❌ Theme file not found: user_themes.json",
        )
    except json.JSONDecodeError as e:
        return (
            {"currentTheme": "default", "type": "builtin"},
            f"❌ Invalid JSON in theme file: {str(e)}",
        )
    except Exception as e:
        return (
            {"currentTheme": "default", "type": "builtin"},
            f"❌ Error loading theme: {str(e)}",
        )


# def start_mcp_server():
#     """Start the MCP server in background"""
#     try:
#         mcp_process = subprocess.Popen(
#             [sys.executable, "mcp_server.py"],
#             cwd=Path(__file__).parent,
#             stdout=subprocess.PIPE,
#             stderr=subprocess.PIPE,
#         )
#         return "βœ… MCP Server started successfully! Use stdio transport to connect."
#     except Exception as e:
#         return f"❌ Failed to start MCP server: {str(e)}"


# Custom CSS for minimal design (no @import allowed in Gradio)
custom_css = """
.header-container {
    text-align: center;
    padding: 1rem 1rem;
    border-bottom: 1px solid #e5e7eb;
    margin-bottom: 1rem;
}

.main-sections {
    max-width: 800px;
    margin: 0 auto;
    padding: 0 1rem 0rem 1rem;
}

.section {
    margin-bottom: 0.75rem;
    padding: 1rem;
    border: 1px solid #e5e7eb;
    border-radius: 8px;
    background: #fafafa;
}

.mcp-info {
    background: #f0f9ff;
    border-color: #0ea5e9;
}

/* Override Gradio's default spacing and remove nested borders */
.gradio-container .block {
    margin: 0.5rem 0 !important;
    border: none !important;
    box-shadow: none !important;
    background: transparent !important;
}

.gradio-container .gr-column {
    gap: 0.5rem !important;
}

/* Remove nested styling from textbox containers */
.section .gradio-container .gr-textbox,
.section .gradio-container .gr-code {
    border: 1px solid #d1d5db !important;
    border-radius: 6px !important;
    background: white !important;
}

/* Ensure code output is selectable and copy button works */
.gr-code .language-json,
.gr-code pre,
.gr-code code {
    user-select: text !important;
    -webkit-user-select: text !important;
    -moz-user-select: text !important;
    -ms-user-select: text !important;
}

/* Make sure copy button is visible and functional */
.gr-code .copy-button,
.gr-code button[aria-label*="copy"],
.gr-code button[title*="copy"] {
    opacity: 1 !important;
    visibility: visible !important;
    pointer-events: auto !important;
}

/* Add margin to bottom footer/button area */
.gradio-container footer,
.gradio-container .footer,
.gradio-container > div:last-child,
footer {
    margin-bottom: 2rem !important;
    padding-bottom: 2rem !important;
}

/* Add bottom margin to the entire Gradio container */
.gradio-container {
    margin-bottom: 3rem !important;
    padding-bottom: 2rem !important;
}
"""

# Build the demo interface with Gradio's built-in font system
with gr.Blocks(css=custom_css, title="Gradio Themer - Demo & MCP Server") as demo:

    # Header
    with gr.Column(elem_classes="header-container"):
        gr.Markdown("# 🎨 Gradio Themer")
        gr.Markdown(
            "**Demo & MCP Server** - Dynamic theme system for Gradio applications"
        )

    # Add the working GradioThemer component
    if THEMER_AVAILABLE:
        themer = GradioThemer(
            value={
                "currentTheme": "corporate",
                "type": "builtin",
                "font": {"family": "Poppins", "weights": ["400", "500", "600", "700"]},
                "removeBorders": True,
                "themeInput": "",
                "themeConfig": None,
                "generatedCSS": "",
            },
            visible=False,
            label="Theme Controller (for debugging)",
            scale=1,
        )
    else:
        themer = gr.HTML(visible=False)  # Dummy component if themer not available

    # Main content
    with gr.Column(elem_classes="main-sections"):

        # Top section - Random theme
        with gr.Column(elem_classes="section"):
            gr.Markdown("### 🎲 Random Theme")

            random_btn = gr.Button("Apply Random Theme", variant="primary", size="lg")
            theme_status = gr.Textbox(
                label="Theme Status",
                placeholder="Click button to apply random theme",
                interactive=False,
            )

        # Demo components to show theming
        with gr.Column(elem_classes="section"):
            gr.Markdown("### 🎨 Live Theme Preview")

            with gr.Row():
                gr.Button("Primary Button", variant="primary")
                gr.Button("Secondary Button", variant="secondary")
                gr.Button("Stop Button", variant="stop")

            with gr.Row():
                gr.Textbox("Sample text input", label="Text Input")
                gr.Slider(0, 100, value=50, label="Slider")

            with gr.Row():
                gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Dropdown")
                gr.Radio(["Choice A", "Choice B"], label="Radio")

        # Middle section - CSS converter
        with gr.Column(elem_classes="section"):
            gr.Markdown(
                """### πŸ”„ AI-Powered CSS to Theme Converter
πŸ€– Convert CSS code or describe your style to generate JSON themes using AI models"""
            )
            with gr.Row():
                model_selector = gr.Dropdown(
                    label="AI Model",
                    choices=[
                        ("Qwen2.5-Coder-7B", "qwen"),
                        ("Meta-Llama-3.1-8B-Instruct", "llama"),
                    ],
                    value="qwen",
                    info="Choose AI model for theme generation",
                    scale=1,
                )
                token_input = gr.Textbox(
                    label="Nebius API Token (Optional)",
                    placeholder="Leave empty for HF Zero inference, or provide Nebius token for better performance",
                    type="password",
                    lines=1,
                    scale=2,
                )

            css_input = gr.Textbox(
                label="Describe your style or paste CSS code here",
                placeholder="Examples:\nβ€’ 'Dark purple theme with neon accents'\nβ€’ 'Corporate blue and white design'\nβ€’ CSS code:\n.my-theme {\n  --primary: #3b82f6;\n  --background: #f8fafc;\n}",
                lines=8,
                max_lines=15,
            )

            convert_btn = gr.Button("Generate JSON", variant="primary", size="lg")

            json_output = gr.Code(
                label="Generated Theme JSON", language="json", lines=20
            )

        # Bottom section - MCP Server info
        with gr.Column(elem_classes="section mcp-info"):
            gr.Markdown("### πŸ€– MCP Server Integration")
            gr.Markdown(
                """
            This Space functions as both a **Demo** and **MCP Server** for AI agents.
            
            **Available MCP Tools:**
            
            1. **`setup_package`** - Install and verify gradio-themer package
            2. **`generate_theme`** - Create theme JSON configuration
            3. **`convert_css_to_theme`** - Convert CSS to standardized JSON format (uses HF LLM)
            4. **`generate_app_code`** - Generate complete Gradio app with theming
            
            **For AI Agents:**
            - Connect to this Space as an MCP server
            - Use tools to help users create themed Gradio applications
            - Automate theme generation and application setup
            
            **For Developers:**
            - Install: `pip install gradio-themer`
            - Use the component in your Gradio apps
            - Create custom themes with JSON configuration
            
            **MCP Endpoint:** `/gradio_api/mcp/sse`
            """
            )

    # Event handlers
    random_btn.click(
        fn=apply_random_theme,
        outputs=[themer, theme_status],
        show_api=False,  # Hide from API docs but keep UI functional
    )

    convert_btn.click(
        fn=convert_css_to_theme_json_ai,
        inputs=[css_input, token_input, model_selector],
        outputs=[json_output],
        show_api=False,  # Hide from API docs but keep UI functional
    )


# Launch the demo
if __name__ == "__main__":
    # Configure for Google Fonts support and MCP server (as per GRADIO_MCP_HF_SPACES_GUIDE.md)
    demo.launch(
        mcp_server=True,  # CRITICAL: Enable MCP server functionality
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=True,
        # Allow external resources like Google Fonts
        allowed_paths=["./"],
    )