Spaces:
Runtime error
Runtime error
Commit
Β·
fa3cb20
1
Parent(s):
b39ba03
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
if 'google.colab' in sys.modules:
|
| 3 |
+
print('Running in Colab.')
|
| 4 |
+
!pip3 install transformers==4.15.0 timm==0.4.12 fairscale==0.4.4
|
| 5 |
+
!git clone https://github.com/salesforce/BLIP
|
| 6 |
+
%cd BLIP
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import torch
|
| 9 |
+
import requests
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import requests
|
| 13 |
+
import torch
|
| 14 |
+
from torchvision import transforms
|
| 15 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
#@title
|
| 19 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 20 |
+
|
| 21 |
+
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
| 22 |
+
response = requests.get("https://git.io/JJkYN")
|
| 23 |
+
labels = response.text.split("\n")
|
| 24 |
+
|
| 25 |
+
def predict(inp):
|
| 26 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
| 29 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
| 30 |
+
return confidences
|
| 31 |
+
|
| 32 |
+
demo = gr.Interface(fn=predict,
|
| 33 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 34 |
+
outputs=gr.outputs.Label(num_top_classes=3)
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
def load_demo_image(image_size,device,imageurl):
|
| 38 |
+
img_url = imageurl
|
| 39 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
| 40 |
+
|
| 41 |
+
w,h = raw_image.size
|
| 42 |
+
display(raw_image.resize((w//5,h//5)))
|
| 43 |
+
|
| 44 |
+
transform = transforms.Compose([
|
| 45 |
+
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
|
| 46 |
+
transforms.ToTensor(),
|
| 47 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
| 48 |
+
])
|
| 49 |
+
image = transform(raw_image).unsqueeze(0).to(device)
|
| 50 |
+
return image
|
| 51 |
+
from models.blip import blip_decoder
|
| 52 |
+
|
| 53 |
+
def predict(imageurl):
|
| 54 |
+
image_size = 384
|
| 55 |
+
image = load_demo_image(image_size=image_size, device=device,imageurl=imageurl)
|
| 56 |
+
|
| 57 |
+
model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'
|
| 58 |
+
|
| 59 |
+
model = blip_decoder(pretrained=model_url, image_size=image_size, vit='base')
|
| 60 |
+
model.eval()
|
| 61 |
+
model = model.to(device)
|
| 62 |
+
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
# beam search
|
| 65 |
+
caption = model.generate(image, sample=False, num_beams=3, max_length=20, min_length=5)
|
| 66 |
+
# nucleus sampling
|
| 67 |
+
# caption = model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5)
|
| 68 |
+
return('caption: '+caption[0])
|
| 69 |
+
demo = gr.Interface(fn=predict,
|
| 70 |
+
inputs="text",
|
| 71 |
+
outputs=gr.outputs.Label(num_top_classes=3)
|
| 72 |
+
)
|
| 73 |
+
demo.launch()
|