Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,41 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
#
|
4 |
-
|
|
|
5 |
|
6 |
-
# Define the interface
|
7 |
interface = gr.Interface(
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
outputs="text",
|
13 |
-
css="""
|
14 |
-
.gr-form textarea {
|
15 |
-
height: 100px; /* Adjust height as needed */
|
16 |
-
}
|
17 |
-
""", # Optional: Adjust input text area height
|
18 |
-
description="Interact with BLOOM",
|
19 |
)
|
20 |
-
#max_token = gr.Slider(minimum=1, maximum=256, label="Max New Tokens", value=128),
|
21 |
|
22 |
# Launch the Gradio interface
|
23 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
# Define the BLOOM model name
|
6 |
+
model_name = "CreitinGameplays/bloom-3b-conversational"
|
7 |
+
|
8 |
+
# Load tokenizer and model
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
+
|
12 |
+
def generate_text(prompt):
|
13 |
+
"""Generates text using the BLOOM model from Hugging Face Transformers."""
|
14 |
+
# Encode the prompt into tokens
|
15 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
16 |
+
|
17 |
+
# Generate text with the prompt and limit the maximum length to 256 tokens
|
18 |
+
output = model.generate(
|
19 |
+
input_ids=input_ids,
|
20 |
+
max_length=256,
|
21 |
+
num_return_sequences=1, # Generate only 1 sequence
|
22 |
+
do_sample=True, # Enable sampling for creativity
|
23 |
+
top_k=50, # Sample from the top 50 most likely tokens at each step
|
24 |
+
top_p=0.95, # Filter out highly probable unlikely continuations
|
25 |
+
temperature=1.0 # Control the randomness of the generated text (1.0 for default)
|
26 |
+
)
|
27 |
|
28 |
+
# Decode the generated token sequence back to text
|
29 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
30 |
+
return generated_text
|
31 |
|
32 |
+
# Define the Gradio interface
|
33 |
interface = gr.Interface(
|
34 |
+
fn=generate_text,
|
35 |
+
inputs="text",
|
36 |
+
outputs="text",
|
37 |
+
description="Interact with BLOOM (Loaded with Hugging Face Transformers)",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
)
|
|
|
39 |
|
40 |
# Launch the Gradio interface
|
41 |
+
interface.launch()
|