CreitinGameplays commited on
Commit
9e3433c
·
verified ·
1 Parent(s): 2a472e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -16
app.py CHANGED
@@ -1,23 +1,41 @@
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- # Load the BLOOM model
4
- model = gr.load("models/CreitinGameplays/bloom-3b-conversational")
 
5
 
6
- # Define the interface with default prompt
7
  interface = gr.Interface(
8
- fn=model,
9
- inputs=[
10
- gr.Textbox(label="Text Prompt", value="<|system|> You are a helpful AI assistant </s> <|prompter|> What is an AI? </s> <|assistant|>")
11
- ],
12
- outputs="text",
13
- css="""
14
- .gr-form textarea {
15
- height: 100px; /* Adjust height as needed */
16
- }
17
- """, # Optional: Adjust input text area height
18
- description="Interact with BLOOM",
19
  )
20
- #max_token = gr.Slider(minimum=1, maximum=256, label="Max New Tokens", value=128),
21
 
22
  # Launch the Gradio interface
23
- interface.launch()
 
1
  import gradio as gr
2
+ import gradio as gr
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+
5
+ # Define the BLOOM model name
6
+ model_name = "CreitinGameplays/bloom-3b-conversational"
7
+
8
+ # Load tokenizer and model
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ model = AutoModelForCausalLM.from_pretrained(model_name)
11
+
12
+ def generate_text(prompt):
13
+ """Generates text using the BLOOM model from Hugging Face Transformers."""
14
+ # Encode the prompt into tokens
15
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
16
+
17
+ # Generate text with the prompt and limit the maximum length to 256 tokens
18
+ output = model.generate(
19
+ input_ids=input_ids,
20
+ max_length=256,
21
+ num_return_sequences=1, # Generate only 1 sequence
22
+ do_sample=True, # Enable sampling for creativity
23
+ top_k=50, # Sample from the top 50 most likely tokens at each step
24
+ top_p=0.95, # Filter out highly probable unlikely continuations
25
+ temperature=1.0 # Control the randomness of the generated text (1.0 for default)
26
+ )
27
 
28
+ # Decode the generated token sequence back to text
29
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
30
+ return generated_text
31
 
32
+ # Define the Gradio interface
33
  interface = gr.Interface(
34
+ fn=generate_text,
35
+ inputs="text",
36
+ outputs="text",
37
+ description="Interact with BLOOM (Loaded with Hugging Face Transformers)",
 
 
 
 
 
 
 
38
  )
 
39
 
40
  # Launch the Gradio interface
41
+ interface.launch()