Update app.py
Browse files
app.py
CHANGED
|
@@ -1,107 +1,20 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
-
import random
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
def chat_inf(system_prompt, prompt, history, client_choice, seed, temp, tokens, top_p, rep_p):
|
| 25 |
-
client = clients[int(client_choice) - 1]
|
| 26 |
-
if not history:
|
| 27 |
-
history = []
|
| 28 |
-
hist_len = 0
|
| 29 |
-
if history:
|
| 30 |
-
hist_len = len(history)
|
| 31 |
-
print(hist_len)
|
| 32 |
-
|
| 33 |
-
generate_kwargs = dict(
|
| 34 |
-
temperature=temp,
|
| 35 |
-
max_new_tokens=tokens,
|
| 36 |
-
top_p=top_p,
|
| 37 |
-
repetition_penalty=rep_p,
|
| 38 |
-
do_sample=True,
|
| 39 |
-
seed=seed,
|
| 40 |
-
)
|
| 41 |
-
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
| 42 |
-
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
|
| 43 |
-
return_full_text=False)
|
| 44 |
-
output = ""
|
| 45 |
-
|
| 46 |
-
for response in stream:
|
| 47 |
-
output += response.token.text
|
| 48 |
-
yield [(prompt, output)]
|
| 49 |
-
history.append((prompt, output))
|
| 50 |
-
yield history
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
def clear_fn():
|
| 54 |
-
return None
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
rand_val = random.randint(1, 1111111111111111)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def check_rand(inp, val):
|
| 61 |
-
if inp is True:
|
| 62 |
-
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
|
| 63 |
-
else:
|
| 64 |
-
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
with gr.Blocks() as app:
|
| 68 |
-
gr.HTML(
|
| 69 |
-
"""<center><h1 style='font-size:xx-large;'>Models</h1></center>""")
|
| 70 |
-
with gr.Group():
|
| 71 |
-
with gr.Row():
|
| 72 |
-
client_choice = gr.Dropdown(label="Models", type='index', choices=[c for c in models], value=models[0],
|
| 73 |
-
interactive=True)
|
| 74 |
-
chat_b = gr.Chatbot(height=500)
|
| 75 |
-
with gr.Group():
|
| 76 |
-
with gr.Row():
|
| 77 |
-
with gr.Column(scale=1):
|
| 78 |
-
with gr.Group():
|
| 79 |
-
rand = gr.Checkbox(label="Random Seed", value=True)
|
| 80 |
-
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
|
| 81 |
-
tokens = gr.Slider(label="Max new tokens", value=6400, minimum=0, maximum=8000, step=64,
|
| 82 |
-
interactive=True, visible=True, info="The maximum number of tokens")
|
| 83 |
-
with gr.Column(scale=1):
|
| 84 |
-
with gr.Group():
|
| 85 |
-
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
| 86 |
-
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
| 87 |
-
rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
| 88 |
-
|
| 89 |
-
with gr.Group():
|
| 90 |
-
with gr.Row():
|
| 91 |
-
with gr.Column(scale=3):
|
| 92 |
-
sys_inp = gr.Textbox(label="System Prompt (optional)")
|
| 93 |
-
inp = gr.Textbox(label="Prompt")
|
| 94 |
-
with gr.Row():
|
| 95 |
-
btn = gr.Button("Chat")
|
| 96 |
-
stop_btn = gr.Button("Stop")
|
| 97 |
-
clear_btn = gr.Button("Clear")
|
| 98 |
-
|
| 99 |
-
chat_sub = inp.submit(check_rand, [rand, seed], seed).then(chat_inf,
|
| 100 |
-
[sys_inp, inp, chat_b, client_choice, seed, temp, tokens,
|
| 101 |
-
top_p, rep_p], chat_b)
|
| 102 |
-
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf,
|
| 103 |
-
[sys_inp, inp, chat_b, client_choice, seed, temp, tokens, top_p,
|
| 104 |
-
rep_p], chat_b)
|
| 105 |
-
stop_btn.click(None, None, None, cancels=[go, chat_sub])
|
| 106 |
-
clear_btn.click(clear_fn, None, [chat_b])
|
| 107 |
-
app.queue(default_concurrency_limit=10).launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
def conversation(prompt="", max_tokens=128):
|
| 4 |
+
# Integrate your Bloom 3b model here to generate response based on prompt and max_tokens
|
| 5 |
+
# Replace this with the actual call to your Bloom 3b model
|
| 6 |
+
response = "Bloom 3b is currently unavailable. Try again later!"
|
| 7 |
+
return response
|
| 8 |
+
|
| 9 |
+
interface = gr.Interface(
|
| 10 |
+
fn=conversation,
|
| 11 |
+
inputs=[
|
| 12 |
+
gr.Textbox(label="Text Prompt", value="<|system|> You are a helpful AI assistant </s> <|prompter|> What is an AI? </s> <|assistant|>"),
|
| 13 |
+
gr.Slider(minimum=1, maximum=1024, label="Max New Tokens", value=128),
|
| 14 |
+
],
|
| 15 |
+
outputs=gr.Textbox(label="AI Assistant Response"), # Textbox for the response
|
| 16 |
+
title="Bloom 3b Conversational Assistant",
|
| 17 |
+
description="Talk to Bloom 3b using a text prompt and adjust the maximum number tokens for response generation.",
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|