Last commit not found
import gradio as gr | |
import torch | |
import spaces | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Define the BLOOM model name | |
model_name = "CreitinGameplays/bloom-3b-conversational" | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def generate_text(user_prompt): | |
"""Generates text using the BLOOM model from Hugging Face Transformers and removes the user prompt.""" | |
# Construct the full prompt with system introduction, user prompt, and assistant role | |
prompt = f"<|system|> You are a helpful AI assistant. </s> <|prompter|> {user_prompt} </s> <|assistant|>" | |
# Encode the entire prompt into tokens | |
prompt_encoded = tokenizer.encode(prompt, return_tensors="pt").to(device) | |
# Generate text with the complete prompt and limit the maximum length to 256 tokens | |
output = model.generate( | |
input_ids=prompt_encoded, | |
max_length=256, | |
num_beams=1, | |
num_return_sequences=1, | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
temperature=0.2, | |
repetition_penalty=1.155 | |
) | |
# Decode the generated token sequence back to text | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
# Extract the assistant's response (assuming it starts with "<|assistant|>") | |
assistant_response = generated_text.split("<|assistant|>")[-1] | |
assistant_response = assistant_response.replace(f"{user_prompt}", "").strip() | |
assistant_response = assistant_response.replace("You are a helpful AI assistant.", "").strip() | |
return assistant_response | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(label="Text Prompt", value="What's an AI?"), | |
], | |
outputs="text", | |
description="Interact with BLOOM-3b-conversational (Loaded with Hugging Face Transformers)", | |
) | |
# Launch the Gradio interface | |
interface.launch() |