import gradio as gr import torch import spaces import bitsandbytes as bnb from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig # Define the model name model_name = "CreitinGameplays/ConvAI-9b" # Quantization configuration with bitsandbytes settings bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb_config, low_cpu_mem_usage=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #model.to(device) @spaces.GPU(duration=120) def generate_text(user_prompt): """Generates text using the ConvAI model from Hugging Face Transformers and removes the user prompt.""" # Construct the full prompt with system introduction, user prompt, and assistant role system = "You are a helpful AI language model called ChatGPT, your goal is helping users with their questions." prompt = f"<|system|> {system} <|user|> {user_prompt} " # Encode the entire prompt into tokens prompt_encoded = tokenizer.encode(prompt, return_tensors="pt").to(device) # Generate text with the complete prompt and limit the maximum length to 256 tokens output = model.generate( input_ids=prompt_encoded, max_length=1550, num_beams=1, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.9, temperature=0.2, repetition_penalty=1.2 ) # Decode the generated token sequence back to text generated_text = tokenizer.decode(output[0], skip_special_tokens=True) # Extract the assistant's response assistant_response = generated_text.split("<|user|>")[-1] assistant_response = assistant_response.replace(f"{user_prompt}", "").strip() assistant_response = assistant_response.replace(system, "").strip() assistant_response = assistant_response.replace("<|system|>", "").strip() assistant_response = assistant_response.replace("<|assistant|>", "").strip() return assistant_response # Define the Gradio interface interface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Text Prompt", value="What's an AI?"), ], outputs="text", description="Interact with ConvAI (Loaded with Hugging Face Transformers)", ) # Launch the Gradio interface interface.launch()