import gradio as gr import torch import spaces import bitsandbytes as bnb from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig # Define the model name model_name = "CreitinGameplays/ConvAI-9b" # Quantization configuration with bitsandbytes settings bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb_config, low_cpu_mem_usage=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #model.to(device) # Initialize chat history chat_history = [] @spaces.GPU(duration=120) def generate_text(user_prompt, top_p, top_k, temperature): """Generates text using the ConvAI model from Hugging Face Transformers and maintains conversation history.""" # System introduction system = "You are a helpful AI language model called ChatGPT, your goal is helping users with their questions." # Append user prompt to chat history chat_history.append(f"User: {user_prompt}") # Construct the full prompt with system introduction, user prompt, and assistant role prompt = f"{system} {' '.join(chat_history)} " # Encode the entire prompt into tokens prompt_encoded = tokenizer.encode(prompt, return_tensors="pt").to(device) # Generate text with the complete prompt and limit the maximum length to 256 tokens output = model.generate( input_ids=prompt_encoded, max_length=1550, num_beams=1, num_return_sequences=1, do_sample=True, top_k=top_k, top_p=top_p, temperature=temperature, repetition_penalty=1.2 ) # Decode the generated token sequence back to text generated_text = tokenizer.decode(output[0], skip_special_tokens=True) # Extract the assistant's response assistant_response = generated_text.split("User:")[-1].strip() chat_history.append(f"Assistant: {assistant_response}") return "\n".join(chat_history) def reset_history(): global chat_history chat_history = [] return "Chat history reset." # Define the Gradio interface interface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Text Prompt", value="What's an AI?"), gr.Slider(0, 1, value=0.9, label="Top-p"), gr.Slider(1, 100, value=50, step=1, label="Top-k"), gr.Slider(0.01, 1, value=0.2, label="Temperature") ], outputs="text", description="Interact with ConvAI (Loaded with Hugging Face Transformers)", button = gr.Button(label="Reset Chat History"), live=True ) interface.update(elem_id=button.elem_id, value=reset_history), # Launch the Gradio interface interface.launch()