File size: 5,467 Bytes
fc4137d
d552a50
 
 
e648470
d552a50
e648470
d552a50
 
 
 
070eb36
d8d7ef2
e648470
fc4137d
5a69a0d
070eb36
d552a50
 
 
 
 
 
 
fc4137d
 
d552a50
 
 
77b2388
 
d552a50
 
 
 
fc4137d
 
d552a50
 
e648470
 
d552a50
 
fc4137d
 
d552a50
 
d8d7ef2
 
fb19975
34a44c5
fc4137d
d552a50
 
 
 
 
 
 
 
fc4137d
 
d552a50
5ef09d6
 
f706a7d
 
 
 
 
 
 
 
 
 
d552a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
# from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
import os 
# from transformers import T5Tokenizer, T5ForConditionalGeneration
# from langchain.callbacks import get_openai_callback

hub_token = os.environ["HUGGINGFACE_HUB_TOKEN"]

def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text


def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=200,
        chunk_overlap=20,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks):
    # embeddings = OpenAIEmbeddings()
    # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    embeddings = HuggingFaceEmbeddings()
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore


def get_conversation_chain(vectorstore):
    # llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
    # tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
    # model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")

    llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", huggingfacehub_api_token=hub_token, model_kwargs={"temperature":0.5, "max_length":20})

    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handle_userinput(user_question):
    response = st.session_state.conversation
    reply = response.run(user_question)
    st.write(reply)
    # st.session_state.chat_history = response['chat_history']

    # for i, message in enumerate(st.session_state.chat_history):
    #     if i % 2 == 0:
    #         st.write(user_template.replace(
    #             "{{MSG}}", message.content), unsafe_allow_html=True)
    #     else:
    #         st.write(bot_template.replace(
    #             "{{MSG}}", message.content), unsafe_allow_html=True)


def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple PDFs",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with multiple PDFs :books:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            if(len(pdf_docs) == 0):
                st.error("Please upload at least one PDF")
            else:
                with st.spinner("Processing"):
                    # get pdf text
                    raw_text = get_pdf_text(pdf_docs)

                    # get the text chunks
                    text_chunks = get_text_chunks(raw_text)

                    # create vector store
                    vectorstore = get_vectorstore(text_chunks)

                    # create conversation chain
                    st.session_state.conversation = get_conversation_chain(
                        vectorstore)

if __name__ == '__main__':
    main()






# import os
# import getpass
# import streamlit as st
# from langchain.document_loaders import PyPDFLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.vectorstores import Chroma
# from langchain import HuggingFaceHub
# from langchain.chains import RetrievalQA
# # __import__('pysqlite3')
# # import sys
# # sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')


# # load huggingface api key
# hubtok = os.environ["HUGGINGFACE_HUB_TOKEN"]

# # use streamlit file uploader to ask user for file
# # file = st.file_uploader("Upload PDF")


# path = "Geeta.pdf"
# loader = PyPDFLoader(path)
# pages = loader.load()

# # st.write(pages)

# splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
# docs = splitter.split_documents(pages)

# embeddings = HuggingFaceEmbeddings()
# doc_search = Chroma.from_documents(docs, embeddings)

# repo_id = "tiiuae/falcon-7b"
# llm = HuggingFaceHub(repo_id=repo_id, huggingfacehub_api_token=hubtok, model_kwargs={'temperature': 0.2,'max_length': 1000})

# from langchain.schema import retriever
# retireval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=doc_search.as_retriever())

# if query := st.chat_input("Enter a question: "):
#   with st.chat_message("assistant"):
#     st.write(retireval_chain.run(query))