Spaces:
Sleeping
Sleeping
File size: 5,467 Bytes
fc4137d d552a50 e648470 d552a50 e648470 d552a50 070eb36 d8d7ef2 e648470 fc4137d 5a69a0d 070eb36 d552a50 fc4137d d552a50 77b2388 d552a50 fc4137d d552a50 e648470 d552a50 fc4137d d552a50 d8d7ef2 fb19975 34a44c5 fc4137d d552a50 fc4137d d552a50 5ef09d6 f706a7d d552a50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
# from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
import os
# from transformers import T5Tokenizer, T5ForConditionalGeneration
# from langchain.callbacks import get_openai_callback
hub_token = os.environ["HUGGINGFACE_HUB_TOKEN"]
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=200,
chunk_overlap=20,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
# embeddings = OpenAIEmbeddings()
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
embeddings = HuggingFaceEmbeddings()
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
# llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
# tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
# model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", huggingfacehub_api_token=hub_token, model_kwargs={"temperature":0.5, "max_length":20})
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation
reply = response.run(user_question)
st.write(reply)
# st.session_state.chat_history = response['chat_history']
# for i, message in enumerate(st.session_state.chat_history):
# if i % 2 == 0:
# st.write(user_template.replace(
# "{{MSG}}", message.content), unsafe_allow_html=True)
# else:
# st.write(bot_template.replace(
# "{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple PDFs",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
if(len(pdf_docs) == 0):
st.error("Please upload at least one PDF")
else:
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(
vectorstore)
if __name__ == '__main__':
main()
# import os
# import getpass
# import streamlit as st
# from langchain.document_loaders import PyPDFLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.vectorstores import Chroma
# from langchain import HuggingFaceHub
# from langchain.chains import RetrievalQA
# # __import__('pysqlite3')
# # import sys
# # sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
# # load huggingface api key
# hubtok = os.environ["HUGGINGFACE_HUB_TOKEN"]
# # use streamlit file uploader to ask user for file
# # file = st.file_uploader("Upload PDF")
# path = "Geeta.pdf"
# loader = PyPDFLoader(path)
# pages = loader.load()
# # st.write(pages)
# splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
# docs = splitter.split_documents(pages)
# embeddings = HuggingFaceEmbeddings()
# doc_search = Chroma.from_documents(docs, embeddings)
# repo_id = "tiiuae/falcon-7b"
# llm = HuggingFaceHub(repo_id=repo_id, huggingfacehub_api_token=hubtok, model_kwargs={'temperature': 0.2,'max_length': 1000})
# from langchain.schema import retriever
# retireval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=doc_search.as_retriever())
# if query := st.chat_input("Enter a question: "):
# with st.chat_message("assistant"):
# st.write(retireval_chain.run(query)) |