import gradio as gr import pandas as pd import numpy as np # Create a sample dataframe with 10 language models and 57 attributes np.random.seed(0) data = pd.DataFrame(np.random.rand(10, 57), columns=[f'Attribute_{i+1}' for i in range(57)], index=[f'Model_{i+1}' for i in range(10)]) # Let's consider the first attribute as the main one for sorting the leaderboard data = data.sort_values('Attribute_1', ascending=False) def show_leaderboard(): # Convert dataframe to html so that it can be displayed properly in Gradio return data.to_html() iface = gr.Interface(fn=show_leaderboard, inputs=[], outputs="html") # Run the interface. # Note: you don't need to use .launch() in Hugging Face Spaces, this is for local testing. iface.launch()