MMLU-by-task / app.py
Corey Morris
Added one llama result for MMLU
ffdb8d3
raw
history blame
692 Bytes
import gradio as gr
import pandas as pd
import numpy as np
import json
# Load the data from the JSON file
with open('llama-30B_mmlu_5-shot.json', 'r') as f:
results = json.load(f)
# Create a DataFrame from the results dictionary
data = pd.DataFrame(results['results']).T
# Sort the DataFrame by 'acc' column
data = data.sort_values('acc', ascending=False)
def show_leaderboard():
# Convert dataframe to html so that it can be displayed properly in Gradio
return data.to_html()
iface = gr.Interface(fn=show_leaderboard, inputs=[], outputs="html")
# Run the interface.
# Note: you don't need to use .launch() in Hugging Face Spaces, this is for local testing.
iface.launch()