Spaces:
Running
Running
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import nltk | |
from nltk.tokenize import sent_tokenize | |
# Set page config at the very beginning | |
st.set_page_config(page_title="LLM Detector", layout="centered") | |
# Download the punkt tokenizer for sentence splitting (with caching) | |
def download_nltk_punkt(): | |
nltk.download("punkt", quiet=True) | |
download_nltk_punkt() | |
# Load the model and tokenizer (with caching) | |
def load_model_and_tokenizer(): | |
model_name = "CoolSpring/creative-writing-llm-detector-deberta-v3-xsmall" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
return tokenizer, model | |
tokenizer, model = load_model_and_tokenizer() | |
def classify_text(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
probabilities = torch.softmax(logits, dim=1) | |
return probabilities[0][1].item() # Probability of being AI-generated | |
def highlight_suspicious_sentences(text): | |
sentences = sent_tokenize(text) | |
scores = [classify_text(sentence) for sentence in sentences] | |
return sentences, scores | |
def get_color(score): | |
if score < 0.33: | |
return "rgba(144, 238, 144, 0.3)" # Light green | |
elif score < 0.66: | |
return "rgba(255, 255, 0, 0.3)" # Light yellow | |
else: | |
return "rgba(255, 99, 71, 0.3)" # Light red | |
st.title("π€ LLM Detector") | |
st.write("Enter text to detect if it's written by an AI language model.") | |
# Use session state to store the input text | |
if "text_input" not in st.session_state: | |
st.session_state.text_input = "" | |
text_input = st.text_area( | |
"Enter your text here:", value=st.session_state.text_input, height=200 | |
) | |
# Update session state when input changes | |
if text_input != st.session_state.text_input: | |
st.session_state.text_input = text_input | |
if st.button("Analyze and Highlight"): | |
if text_input: | |
overall_probability = classify_text(text_input) | |
st.markdown( | |
f"<h3>Overall probability of being AI-generated: <span style='color: {'red' if overall_probability > 0.5 else 'green'};'>{overall_probability:.2%}</span></h3>", | |
unsafe_allow_html=True, | |
) | |
st.markdown("### Sentence-level analysis:") | |
sentences, scores = highlight_suspicious_sentences(text_input) | |
for sentence, score in zip(sentences, scores): | |
color = get_color(score) | |
st.markdown( | |
f"<div style='background-color: {color}; padding: 10px; margin: 5px 0; border-radius: 5px;'><strong>{score:.2%}</strong> - {sentence}</div>", | |
unsafe_allow_html=True, | |
) | |
else: | |
st.warning("Please enter some text to analyze.") | |
how_it_works_text = """This LLM Detector uses [CoolSpring/creative-writing-llm-detector-deberta-v3-xsmall](https://huggingface.co/CoolSpring/creative-writing-llm-detector-deberta-v3-xsmall), a DeBERTa-v3-xsmall model fine-tuned for text classification. | |
It analyzes the input text and estimates the probability of it being generated by an AI language model. | |
The sentence-level analysis breaks down the input into individual sentences and analyzes each one separately, allowing you to see which parts of the text are more likely to be AI-generated. | |
Please note that this is not 100% accurate and should be used as a guide rather than a definitive measure.""" | |
if st.button("Fill with Sample Text"): | |
st.session_state.text_input = "\n".join(how_it_works_text.splitlines()[2:]) | |
st.rerun() | |
st.markdown( | |
f"""### How it works | |
{how_it_works_text}""" | |
) | |