from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration, T5Tokenizer tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") grammar_tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector') grammar_model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector') import torch import gradio as gr def chat(message, history, bot_input_ids): history = history or [] bot_input_ids = bot_input_ids or [] new_user_input_ids = tokenizer.encode(message+tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=5000, pad_token_id=tokenizer.eos_token_id) print("The text is ", [text]) # pretty print last ouput tokens from bot reponse = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) history.append((message, response)) return history, bot_input_ids, feedback(message) def feedback(text): num_return_sequences=1 batch = grammar_tokenizer([text],truncation=True,padding='max_length',max_length=64, return_tensors="pt") corrections= grammar_model.generate(**batch,max_length=64,num_beams=2, num_return_sequences=num_return_sequences, temperature=1.5) print("The corrections are: ", corrections) if len(corrections) == 0: feedback = f'Looks good! Keep up the good work' else: suggestion = grammar_tokenizer.batch_decode(corrections[0], skip_special_tokens=True) suggestion = [sug for sug in suggestion if '<' not in sug] feedback = f'\'{" ".join(suggestion)}\' might be a little better' return feedback iface = gr.Interface( chat, ["text", "state", "state"], ["chatbot", "state", "state", "text"], allow_screenshot=False, allow_flagging="never", ) iface.launch()