Spaces:
Build error
Build error
File size: 2,543 Bytes
71f2227 3e149d5 71f2227 0a042d8 cdfe192 703a8b7 0a042d8 61a2cb3 5155493 61a2cb3 3e149d5 55f3dd8 c669d92 704dec0 7617e7e 10ac208 08d35ca 703a8b7 db0e2dc cdfe192 247e692 db0e2dc cdfe192 db0e2dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration, T5Tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
grammar_tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector')
grammar_model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector')
import torch
import gradio as gr
# def chat(message, history):
# history = history if history is not None else []
# new_user_input_ids = tokenizer.encode(message+tokenizer.eos_token, return_tensors='pt')
# bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# history = model.generate(bot_input_ids, max_length=500, pad_token_id=tokenizer.eos_token_id).tolist()
# # response = tokenizer.decode(history[0]).replace("<|endoftext|>", "\n")
# # pretty print last ouput tokens from bot
# response = tokenizer.decode(bot_input_ids.shape[-1][0], skip_special_tokens=True)
# print("The response is ", [response])
# # history.append((message, response, new_user_input_ids, chat_history_ids))
# return response, history, feedback(message)
def chat(message, history=[]):
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
history = model.generate(bot_input_ids, max_length=500, pad_token_id=tokenizer.eos_token_id).tolist()
response = tokenizer.decode(history[0]).replace("<|endoftext|>", "")
return response, history
def feedback(text):
num_return_sequences=1
batch = grammar_tokenizer([text],truncation=True,padding='max_length',max_length=64, return_tensors="pt")
corrections= grammar_model.generate(**batch,max_length=64,num_beams=2, num_return_sequences=num_return_sequences, temperature=1.5)
print("The corrections are: ", corrections)
if len(corrections) == 0:
feedback = f'Looks good! Keep up the good work'
else:
suggestion = grammar_tokenizer.batch_decode(corrections[0], skip_special_tokens=True)
suggestion = [sug for sug in suggestion if '<' not in sug]
feedback = f'\'{" ".join(suggestion)}\' might be a little better'
return feedback
iface = gr.Interface(
chat,
["text", "state"],
["chatbot", "state", "text"],
allow_screenshot=False,
allow_flagging="never",
)
iface.launch()
|